数学ナビゲーター掲示板

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

■ 過去ログ検索の勧め⇒ここを読んでみてください
google検索

 
この掲示板の過去ログをgoogleで検索します。
検索条件:
現在のログを検索過去のログを検索
■ 2006/2/20より、累計:、本日:、昨日:
数式の記述方法
TeX入力ができます。 \[ TeX形式数式 \] あるいは,$ TeX形式数式 $ で数式を記述します。
 TeX形式数式には半角英数字のみです。詳しくは、ここを見てください。文字化けが発生したときはここを見てください。
■ 質問をする方は、回答者に失礼のないようにお願いします。
携帯電話でこの掲示板を見れるようにしました。⇒ここを見てください。
■ 24時間以内に作成されたスレッドは New で表示されます。
■ 24時間以内に更新されたスレッドは UpDate で表示されます。

記事リスト ( )内の数字はレス数
New二重積分について(0) | New原点を中心とする単位円上の複素数(0) | UpDate幾何学(1) | UpDate論理式(3) | NewQ=10√KL をグラフにする(0) | Nomal二次方程式(2) | Nomal積と和が一致する自然数の組(4) | Nomalグラムシュミット(0) | Nomal大学数学(1) | Nomal共分散行列(0) | Nomal大学数学(0) | Nomal素数(6) | Nomal確率 統計の問題(0) | Nomalフェルマの小定理(1) | Nomal大学線形(0) | Nomal大学線形(0) | Nomal大学数学 4次多項式 フェラーリの解法(1) | Nomal漸化式(1) | Nomal最大公約数(0) | Nomal和の求め方がわかりません。(3) | Nomal業界最も人気(0) | Nomalベイズ更新について(0) | Nomal無限積分(2) | Nomal三角関数の極限(1) | Nomal極限(3) | Nomal約数(2) | Nomal約数(2) | Nomal順列組合せ〜区別するものしないもの(6) | Nomal場合の数(2) | Nomal数的推理(2) | Nomal三角形の辺の長さ(6) | Nomal単位円と三角形(1) | Nomal1/xについて(2) | Nomal調べた確率がどれくらい信用できるかを求めたい(0) | Nomal命題の真偽(8) | Nomal期待値(13) | Nomal因数分解(2) | Nomal√の問題(2) | Nomal極形式(6) | Nomaltanと自然数(2) | Nomalα^52(2) | Nomal放物線の標準形(4) | Nomal循環小数(2) | Nomal四角形の辺の長さ(2) | Nomalコラッツ予想について(2) | Nomal三角形の角(3) | Nomal有理数と素数(1) | Nomal円と曲線(3) | Nomalフィボナッチ数列について。(0) | Nomal導関数の定義について(2) | Nomal楕円曲線(1) | Nomallog(1+x)<√x(4) | Nomal円と3次関数(4) | NomalΣと積分の交換(3) | Nomalcos(1)とtan(1/2)(2) | Nomal合成数(2) | Nomal積分について(2) | Nomal因数分解(4) | Nomal2次関数(1) | Nomal常用対数と桁数の関係(2) | Nomal(削除)(2) | Nomal行列を含む偏微分(0) | Nomalカタラン数(4) | Nomal無限級数(1) | Nomalスーパコピーvog.agvol.com/brand-70-c0.html ボーイロンドンブラドスパーピー(0) | Nomalかんたんなフェルマーの最終定理の証明(19) | Nomal写像の問題です。(0) | Nomal離散数学 有向グラフの問題(0) | Nomal原始関数問題(1) | Nomal三角形と円の関係について(0) | Nomal|e^(icosθ)|、|e^(isinθ)|について(2) | Nomal大学数学 重積分(0) | Nomal簡単な論理式〜変な質問ですみませんが・・・(2) | Nomal割り算(1) | Nomal確率の問題です。大至急お願い致します(0) | Nomal整数解(7) | Nomal全ての 整数解 等(4) | Nomal完璧なのコピーbuytowe(0) | Nomal素数(1) | Nomal指数計算の練習(2) | Nomal微分積分(0) | Nomalテイラー展開(0) | Nomal合同式(1) | Nomalエルミート行列(0) | Nomal【大学数学】貨幣需要関数(0) | Nomal陰関数(0) | Nomalフェルマーの最終定理の証明(6) | Nomal統計学(0) | Nomalベクトル空間(0) | Nomal複素数の三角不等式(引き算)(2) | Nomal微分の問題(0) | Nomal体積(1) | Nomalフェルマーの最終定理の証明(z=x+rとおく方法)(1) | Nomal微分可能(2) | Nomalチェビシェフ 偏差値(0) | Nomal線形代数(1) | Nomal複素積分(2) | Nomalテイラー展開(2) | Nomal線形変換(1) | Nomal大学数学 線形代数 部分空間の証明(0) |



■記事リスト / ▼下のスレッド
■50433 / 親記事)  線形代数 証明
□投稿者/ TTD 一般人(1回)-(2020/08/08(Sat) 15:00:56)
    質問です。着眼点すら分からず苦戦しています。どなたかご協力をお願い致します。

    Aをm×n行列 r:=rank A、BをAの簡約行列とし、CをBの下の方にある零行ベクトル(があればそれ)をすべて取り除いてできるr×n行列とするこのとき A = PCとなる m × r 行列 P がただ一つ存在することを証明せよ.

引用返信/返信 [メール受信/OFF]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■50427 / 親記事)  ベクトル解析のスカラー場について
□投稿者/ Fav. 一般人(2回)-(2020/08/05(Wed) 21:47:04)
    xyz空間内のスカラー場f,&#8458;と領域Dについて
    ∫∫∫D(f∇^2&#8458;-&#8458;∇^2f)dV=∫∫∂D(f grad &#8458;-&#8458; grad f)・dS
    を示せという問題も分からなくて困っています。
    お願いします!
    ガウスの法則とdiv(fu)=(grad f)・u+f(div u)という式を使うらしいのですがどう使うのかがわかりません
引用返信/返信 [メール受信/OFF]

▽[全レス2件(ResNo.1-2 表示)]
■50429 / ResNo.1)  Re[1]: ベクトル解析のスカラー場について
□投稿者/ X 一般人(3回)-(2020/08/05(Wed) 21:58:26)
    2020/08/05(Wed) 22:02:31 編集(投稿者)

    ガウスの法則ではなくてガウスの発散定理ですね。

    証明すべき等式において
    &#8458

    φ
    と解釈して方針を。

    ガウスの発散定理により
    (右辺)=∫∫∫[D]div(fgradφ-φgradf)dV
    =∫∫∫[D]{div(fgradφ)-div(φgradf)}dV
    後は{}内の第一項、第二項それぞれに対して
    アップされている等式である
    div(f↑u)=(grad f)・↑u+f(div↑u)
    を適用します。

    等式の適用で混乱しているかもしれないので
    ヒントとして念のため書いておきますが
    grad f、gradφ
    はベクトルです。
引用返信/返信 [メール受信/OFF]
■50432 / ResNo.2)  Re[2]: ベクトル解析のスカラー場について
□投稿者/ 絶対といてやるマン 一般人(2回)-(2020/08/08(Sat) 03:04:28)
    理解できました。
    ありがとうございます!!
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-2]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■50430 / 親記事)  フーリエ展開とフーリエ変換
□投稿者/ y 一般人(1回)-(2020/08/06(Thu) 03:54:18)

    フーリエ展開についての質問
    ガウス関数のフーリエ展開ですが、

    1.ガウス関数をy=f(x)とおき、
    y=f(x){0(-a_<x<0,b(x=0),0(0<x<a)}周期2a(2π)
    の範囲でのフーリエ展開をせよ。
    という問題で、ガウス関数のフーリエ展開の仕方がわかりません。
    2.規格化されたガウス関数をフーリエ変換せよ。また、このときの幅をゼロに近づけると、どのようなことが起きるのか考察せよ。

    具体的にわかりやすく説明していただけると嬉しいです。
1125×791 => 250×175

054475AD-2DE0-40F9-BC33-AF1DA07C06DA.jpeg
/137KB
引用返信/返信 [メール受信/ON]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■50390 / 親記事)  加速度の次元と速度の次元
□投稿者/ 葛飾 一般人(1回)-(2020/07/01(Wed) 13:08:45)
    はじめまして。たまたまこちらの掲示板を見つけまして、前から疑問だった
    以下の点について、ヒントでも結構です、皆様のご意見を頂戴したいです。

    東大の問題なのですが↓
    ttp://server-test.net/math/php.php?name=tokyo&v1=1&v2=1982&v3=1&v4=4&y=1982&n=4

    これを解くと、加速度ベクトルの最大値はV^2となります。ここで次元をチェックすると
    まるで加速度の単位が「距離^2/時間^2」と解釈できてしまいます。これはどう考えたら
    良いのでしょうか。

    どうかよろしくお願い致します。

    葛飾
引用返信/返信 [メール受信/OFF]

▽[全レス1件(ResNo.1-1 表示)]
■50426 / ResNo.1)  Re[1]: 加速度の次元と速度の次元
□投稿者/ X 一般人(1回)-(2020/08/05(Wed) 21:42:36)
    2020/08/05(Wed) 21:47:39 編集(投稿者)

    最大値うんぬん以前に加速度ベクトルのy成分の次元を調べてみて下さい。
    次元が見かけ上、加速度の次元になっていない項がありませんか?
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-1]



■記事リスト / ▲上のスレッド
■50417 / 親記事)  弘前大学 2010年度 理系 過去問です。
□投稿者/ ゆゆ 一般人(1回)-(2020/07/22(Wed) 00:54:03)

    弘前大学 2010年度 理系 過去問です。
    答えと回答法を知りたいです。
    よろしくお願いします。

    問題
    座標平面において,原点を中心とする半径 3 の円を C,点 (0, -1) を中心とする半径 8 の円をD とする.C と D にはさまれた領域を E とする.0 <= k <= 3 とする.直線 l と原点との距離が一定値 k であるように l が動くとき,l と E の共通部分の長さの最小値を求めよ.
引用返信/返信 [メール受信/OFF]

▽[全レス1件(ResNo.1-1 表示)]
■50425 / ResNo.1)  Re[1]: 弘前大学 2010年度 理系 過去問です。
□投稿者/ X 一般人(2回)-(2020/08/05(Wed) 19:24:55)
    2020/08/05(Wed) 19:28:27 編集(投稿者)

    lとCとの交点をP,Q、lとDとの交点をT,Uとし
    点(0,-1)を点Aとします。

    今、原点からlに下した垂線の足をHとすると
    条件から
    OH=k
    ∴△OHPにおいて三平方の定理により
    PH=√(OP^2-OH^2)=√(9-k^2) (A)
    △OPH≡△OQHに注意すると
    PQ=2PH=2√(9-k^2) (B)

    さて、条件から
    H(kcosθ,ksinθ)
    (0≦θ<2π (P))
    と置くことができるのでlの方程式は
    (x-kcosθ)cosθ+(y-ksinθ)sinθ=0
    整理をして
    xcosθ+ysinθ-k=0
    ∴点Aからlに下した垂線の足をIとすると
    点と直線との間の距離の公式により
    AI=|-sinθ-k|/√{(cosθ)^2+(sinθ)^2}
    =|sinθ+k|
    ∴(B)を求めるのと同様な過程により
    TU=2√{64-|sinθ+k|^2}
    =2√{64-(sinθ+k)^2} (C)
    (B)(C)より、lとEの共通部分の長さをLとすると
    L=TU-PQ=2√{64-(sinθ+k)^2}-2√(9-k^2)
    ∴(P)よりLはθ=π/2のときに最小値である
    2√{64-(1+k)^2}-2√(9-k^2)
    を取ります。
    以上から求める最小値は
    2√{64-(1+k)^2}-2√(9-k^2)
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-1]






Mode/  Pass/

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

- Child Tree -
Edit By 数学ナビゲーター