数学ナビゲーター掲示板

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

■ 過去ログ検索の勧め⇒ここを読んでみてください
google検索

 
この掲示板の過去ログをgoogleで検索します。
検索条件:
現在のログを検索過去のログを検索
■ 2006/2/20より、累計:、本日:、昨日:
数式の記述方法
TeX入力ができます。 \[ TeX形式数式 \] あるいは,$ TeX形式数式 $ で数式を記述します。
 TeX形式数式には半角英数字のみです。詳しくは、ここを見てください。文字化けが発生したときはここを見てください。
■ 質問をする方は、回答者に失礼のないようにお願いします。
携帯電話でこの掲示板を見れるようにしました。⇒ここを見てください。
■ 24時間以内に作成されたスレッドは New で表示されます。
■ 24時間以内に更新されたスレッドは UpDate で表示されます。

記事リスト ( )内の数字はレス数
Nomalフェルマーの最終定理の簡単な証明9(25) | Nomal円を30度回転させた場合の結果が見たい。(17) | Nomal確率における情報(17) | Nomalプログラミング言語BASIC言語について。(14) | Nomal期待値(13) | Nomal論理を教えて下さい(12) | Nomal円錐台の断面積(9) | Nomal二次不等式(9) | Nomalガウス整数の平方和(8) | Nomal二項定理(8) | Nomal命題の真偽(8) | Nomal無限等比数列と微分の問題です。(7) | Nomal3の個数(7) | Nomal整数解(7) | Nomal複素数平面(6) | Nomal過去ログ記事を読んでいて(6) | Nomal水かさの問題です(中学受験)(6) | Nomal部分分数分解(6) | Nomal素数(6) | Nomal順列組合せ〜区別するものしないもの(6) | Nomal三角形の辺の長さ(6) | Nomal極形式(6) | Nomalフェルマーの最終定理の証明(6) | Nomal複数の点によって構成される多角形を相互の距離情報から類推する方法(6) | Nomal初等数学によるフェルマーの最終定理の証明(5) | Nomal積と和が一致する自然数の組(5) | Nomal複素数の関数(5) | Nomal素数積の評価〜ベルトラン・チェビシェフの定理(5) | Nomal群の問題(5) | Nomal不等式(4) | Nomal係数(4) | Nomal整数の例(4) | Nomal式の値(4) | Nomal高校受験の問題です(4) | Nomalおすすめの本(4) | Nomal二重積分(4) | Nomal多項式(4) | Nomal確率(4) | Nomal大学数学統計学の問題(4) | Nomal複素数(4) | Nomal必要十分条件(4) | Nomal導関数(4) | NomalLambert W関数を用いた数式(4) | Nomal論理式(4) | Nomal放物線の標準形(4) | Nomallog(1+x)<√x(4) | Nomal円と3次関数(4) | Nomal因数分解(4) | Nomalカタラン数(4) | Nomal複素関数の部分分数分解(4) | Nomal全ての 整数解 等(4) | Nomal正射影再び(笑)(4) | Nomalなぜ2乗? 内積の意味は??(4) | Nomal極大と変曲(4) | Nomalsinの不等式(4) | Nomal合同式の計算(4) | Nomallogの計算(3) | Nomal極限(3) | Nomalこれだけで求められるの?(3) | Nomal二次方程式の定数を求める(3) | Nomal数学はゲーム(3) | Nomal複素数(3) | Nomal積分(3) | Nomal素数(3) | Nomal不等式(3) | Nomal数列の極限(3) | Nomal積分の応用(3) | Nomal複素数の問題(3) | Nomal辺の和の最小値(3) | Nomal角度(3) | Nomal必要十分条件(3) | Nomal三角関数(3) | Nomalベクトルの大きさ(3) | Nomal和の求め方がわかりません。(3) | Nomal極限(3) | Nomal三角形の角(3) | Nomalコラッツ予想について(3) | Nomalフィボナッチ数列について。(3) | Nomal円と曲線(3) | NomalΣと積分の交換(3) | Nomal2次方程式(3) | Nomal(削除)(3) | Nomal連立方程式(3) | Nomalピタゴラスの定理の簡単な証明(3) | Nomalリーマン積分可能性(3) | Nomal統計/区画幅について(3) | Nomal統計学についての質問(3) | Nomaltan(z) を z = π/2 中心にローラン展開する(2) | Nomal囲まれた面積(2) | Nomal複素数(2) | Nomal確率(2) | Nomal低レベルな問題ですいません(2) | Nomal環でしょうか(2) | Nomal速度(2) | Nomali^iについて(2) | Nomal円に内接する四角形(2) | Nomal場合の数(2) | Nomal質問(2) | Nomal不等式(2) | Nomal確立 基礎問題(2) | Nomal不等式(2) |



■記事リスト / ▼下のスレッド
■50914 / 親記事)  フェルマーの最終定理の簡単な証明
□投稿者/ 日高 一般人(13回)-(2021/07/12(Mon) 08:43:33)
    【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
    【証明】x^n+y^n=z^nを、z=x+rとおくと、x^n+y^n=(x+r)^n…(1)となる。
    (1)はrがどんな数でも、解の比は同じとなるので、rを有理数とする。
    (1)のyに任意の有理数を代入すると、xは、無理数となる。
    ∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
    -----------------------------------------------------------------------------------
    【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
    【証明】x^2+y^2=z^2を、z=x+rとおくと、x^2+y^2=(x+r)^2…(1)となる。
    (1)はrがどんな数でも、解の比は同じとなるので、rを有理数とする。
    (1)のyに任意の有理数を代入すると、xは、有理数となる。
    ∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
引用返信/返信 [メール受信/OFF]

▽[全レス2件(ResNo.1-2 表示)]
■50915 / ResNo.1)  Re[1]: フェルマーの最終定理の簡単な証明
□投稿者/ 日高 一般人(14回)-(2021/07/12(Mon) 11:36:05)
    【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
    【証明】x^n+y^n=z^nを、z=x+rとおくと、x^n+y^n=(x+r)^n…(1)となる。
    (1)はrがどんな数でも、解の比は同じとなるので、r=1とする。
    (1)のyに任意の有理数を代入すると、xは、無理数となる。
    ∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
    ----------------------------------------------------------------
    【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
    【証明】x^2+y^2=z^2を、z=x+rとおくと、x^2+y^2=(x+r)^2…(1)となる。
    (1)はrがどんな数でも、解の比は同じとなるので、r=1とする。
    (1)のyに任意の有理数を代入すると、xは、有理数となる。
    ∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
引用返信/返信 [メール受信/OFF]
■50916 / ResNo.2)  Re[2]: フェルマーの最終定理の簡単な証明
□投稿者/ 日高 一般人(15回)-(2021/07/12(Mon) 19:51:45)
    【定理】n≧3のとき、X^n+Y^n=Z^nは自然数解を持たない。
    【証明】X^n+Y^n=Z^nを、Z=X+rとおくと、X^n+Y^n=(X+r)^n…(1)となる。
    (1)はrがどんな数でも、解の比は同じとなるので、r=1とする。
    (1)のYに任意の奇数を代入すると、Xは、無理数となる。
    ∴n≧3のとき、X^n+Y^n=Z^nは自然数解を持たない。
    ------------------------------------------------------------
    【定理】n=2のとき、X^n+Y^n=Z^nは自然数解を持つ。
    【証明】X^2+Y^2=Z^2を、Z=X+rとおくと、X^2+Y^2=(X+r)^2…(1)となる。
    (1)はrがどんな数でも、解の比は同じとなるので、r=1とする。
    (1)のYに任意の奇数を代入すると、Xは、自然数となる。
    ∴n=2のとき、X^n+Y^n=Z^nは自然数解を持つ。
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-2]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■50911 / 親記事)  三角比
□投稿者/ 数学 一般人(3回)-(2021/07/11(Sun) 00:54:27)
    −tan65°を45°以下の三角比で表すとき、
    −がついていても大丈夫なのでしょうか?
    -がついている場合、(90°−θ)はどのように考えれば良いのですか?
引用返信/返信 [メール受信/OFF]

▽[全レス2件(ResNo.1-2 表示)]
■50912 / ResNo.1)  Re[1]: 三角比
□投稿者/ らすかる 付き人(63回)-(2021/07/11(Sun) 05:54:35)
    問題によりますので、その質問だけでは判断できません。
引用返信/返信 [メール受信/OFF]
■50919 / ResNo.2)  Re[1]: 三角比
□投稿者/ 数学 一般人(6回)-(2021/07/13(Tue) 03:57:57)
    分かりました。考え直してみます。ありがとうございました。
解決済み!
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-2]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■50901 / 親記事)  積分の漸化式
□投稿者/ 積分 一般人(1回)-(2021/07/09(Fri) 09:15:14)
    I[n]=∫((1+cosx)/2)^(n-1)(-1/cosx)^ndx
    と定めるときI[n+1]をI[n]であらわせ。

    この問題が解けません。教えて下さい。
引用返信/返信 [メール受信/OFF]

▽[全レス2件(ResNo.1-2 表示)]
■50902 / ResNo.1)  Re[1]: 積分の漸化式
□投稿者/ 積分 一般人(2回)-(2021/07/09(Fri) 15:01:07)
    No50901に返信(積分さんの記事)
    > I[n]=∫((1+cosx)/2)^(n-1)(-1/cosx)^ndx
    > と定めるときI[n+1]をI[n]であらわせ。
    >
    > この問題が解けません。教えて下さい。


    解決しました。ありがとうございました。
解決済み!
引用返信/返信 [メール受信/OFF]
■50903 / ResNo.2)  Re[2]: 積分の漸化式
□投稿者/ 積分 一般人(3回)-(2021/07/09(Fri) 15:25:41)
    上の人は別人です。なりすましです。
    まだ解決していません。

    引き続きご指導よろしくお願いします。
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-2]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■50878 / 親記事)  cosθ
□投稿者/ アイナ・ヂ・遠藤 一般人(1回)-(2021/07/01(Thu) 21:04:48)
    cosθ, cos2θ, cos3θ, cos4θ, ....... , coskθ, .......
    という数列のどこか連続する4項が有理数ならば、
    この数列は全ての項が有理数だと言えますか?
引用返信/返信 [メール受信/OFF]

▽[全レス2件(ResNo.1-2 表示)]
■50879 / ResNo.1)  Re[1]: cosθ
□投稿者/ WIZ 一般人(7回)-(2021/07/02(Fri) 21:45:06)
    # θとタイプするのが面倒なので、t とタイプさせて頂きます。

    cos(t) が有理数であることが示せれば十分です。
    何故なら、任意の自然数 k に対して、cos(kt) は cos(t) の整数係数の整式になるからです。

    k を自然数、p, q, r, s を有理数として、
    p = cos(kt) ・・・・・(1)
    q = cos((k+1)t) ・・・・・(2)
    r = cos((k+2)t) ・・・・・(3)
    s = cos((k+3)t) ・・・・・(4)
    とします。

    (1)(2)より、
    q = cos(kt)cos(t)-sin(kt)sin(t) = p*cos(t)-sin(kt)sin(t)
    ⇒ sin(kt)sin(t) = p*cos(t)-q ・・・・・(5)

    (1)(3)(5)より、
    r = cos(kt)cos(2t)-sin(kt)sin(2t)
    = p(2cos(t)^2-1)-2sin(kt)sin(t)cos(t)
    = p(2cos(t)^2-1)-2(p*cos(t)-q)cos(t)
    = 2q*cos(t)-p ・・・・・(6)

    q ≠ 0 ならば、(6)より
    cos(t) = (p+r)/(2q) ・・・・・(7)

    q = 0 ならば、(6)より
    r = -p ・・・・・(8)

    (2)より、
    q = cos((k+1)t) = 0
    ⇒ sin((k+1)t) = ±1 ・・・・・(9)

    (3)(8)(9)より、
    r = cos((k+1)t)cos(t)-sin((k+1)t)sin(t) = -sin((k+1)t)sin(t)
    ⇒ (-p)^2 = (-sin((k+1)t)sin(t))^2 = sin(t)^2
    ⇒ p^2 = 1-cos(t)^2
    ⇒ cos(t)^2 = 1-p^2 ・・・・・(10)

    (4)(5)より、
    s = cos(kt)cos(3t)-sin(kt)sin(3t)
    = p(4cos(t)^3-3cos(t))-sin(kt)(3sin(t)-4sin(t)^3)
    = p(4cos(t)^3-3cos(t))-sin(kt)sin(t)(3-4sin(t)^2)
    = p(4cos(t)^3-3cos(t))-p*cos(t)(4cos(t)^2-1)
    = -2p*cos(t) ・・・・・(11)

    p ≠ 0 ならば、(11)より
    cos(t) = -s/(2p) ・・・・・(12)

    p = 0 ならば、(10)より
    cos(t) = ±1 ・・・・・(13)

    以上から、
    q ≠ 0 なら cos(t) = (p+r)/(2q)
    q = 0 かつ p ≠ 0 なら cos(t) = -s/(2p)
    q = 0 かつ p = 0 なら cos(t) = ±1
    ・・・と、いずれも cos(t) は有理数になります。
    よって、連続4項が有理数なら全項が有理数と言えます。
引用返信/返信 [メール受信/OFF]
■50882 / ResNo.2)  Re[2]: cosθ
□投稿者/ アイナ・ヂ・遠藤 一般人(2回)-(2021/07/04(Sun) 14:58:13)
    大変美しい解答を有難うございました。
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-2]



■記事リスト / ▲上のスレッド
■50863 / 親記事)  連立方程式
□投稿者/ まるは 一般人(1回)-(2021/06/26(Sat) 11:13:16)
    の、解法と答えを教えて下さい

    a^2+b^2=c^2
    b^2-{c-(b-a)}=ba
    a^2+{c+(b-a)}=ac
引用返信/返信 [メール受信/OFF]

▽[全レス2件(ResNo.1-2 表示)]
■50866 / ResNo.1)  Re[1]: 連立方程式
□投稿者/ らすかる 付き人(61回)-(2021/06/26(Sat) 19:13:05)
    第3式から (a-1)c=a^2-a+b
    第2式から c=b^2-ab-a+b … (1)
    なので (a-1)c=(a-1)(b^2-ab-a+b)
    よって a^2-a+b=(a-1)(b^2-ab-a+b)
    整理して (b+2)a^2-(b^2+2b+2)a+b(b+2)=0 … (2)
    第1式に(1)を代入して a^2+b^2=(b^2-ab-a+b)^2
    整理して b{(b+2)a^2-2(b^2+2b+1)a+b^2(b+2)}=0 … (3)
    b=0のとき(3)は成り立ち、(2)からa(a-1)=0
    a=0のとき(1)からc=0
    (a,b,c)=(0,0,0)は全式を満たすので解
    a=1のとき(1)からc=-1
    (a,b,c)=(1,0,-1)も全式を満たすので解
    b≠0のとき(3)から (b+2)a^2-2(b^2+2b+1)a+b^2(b+2)=0 … (4)
    (2)から(b+2)a^2=(b^2+2b+2)a-b(b+2)
    (4)から(b+2)a^2=2(b^2+2b+1)a-b^2(b+2)
    2式から (b^2+2b+2)a-b(b+2)=2(b^2+2b+1)a-b^2(b+2)
    整理して (b+2)(a-b+1)=0 … (5)
    b=-2のとき(5)は成り立ち、(2)からa=0、(1)からc=2
    (a,b,c)=(0,-2,2)も全式を満たすので解
    b≠-2のとき(5)から a-b+1=0 すなわち a=b-1
    (2)に代入して
    (b+2)(b-1)^2-(b^2+2b+2)(b-1)+b(b+2)=0
    これより b=4 なので a=b-1=3、(1)からc=5
    (a,b,c)=(3,4,5)も全式を満たすので解
    従って解は
    (a,b,c)=(0,0,0),(1,0,-1),(0,-2,2),(3,4,5)
    の4組。

引用返信/返信 [メール受信/OFF]
■50868 / ResNo.2)  Re[2]: 連立方程式
□投稿者/ まるは 一般人(2回)-(2021/06/27(Sun) 15:10:57)
    ありがとうございました!!
解決済み!
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-2]






Mode/  Pass/

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

- Child Tree -
Edit By 数学ナビゲーター