数学ナビゲーター掲示板

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

■ 過去ログ検索の勧め⇒ここを読んでみてください
google検索

 
この掲示板の過去ログをgoogleで検索します。
検索条件:
現在のログを検索過去のログを検索
■ 2006/2/20より、累計:、本日:、昨日:
数式の記述方法
TeX入力ができます。 \[ TeX形式数式 \] あるいは,$ TeX形式数式 $ で数式を記述します。
 TeX形式数式には半角英数字のみです。詳しくは、ここを見てください。文字化けが発生したときはここを見てください。
■ 質問をする方は、回答者に失礼のないようにお願いします。
携帯電話でこの掲示板を見れるようにしました。⇒ここを見てください。
■ 24時間以内に作成されたスレッドは New で表示されます。
■ 24時間以内に更新されたスレッドは UpDate で表示されます。

記事リスト ( )内の数字はレス数
Nomalフェルマーの最終定理の簡単な証明9(25) | Nomal円を30度回転させた場合の結果が見たい。(17) | Nomal確率における情報(17) | Nomalプログラミング言語BASIC言語について。(14) | Nomal期待値(13) | Nomal論理を教えて下さい(12) | Nomal円錐台の断面積(9) | Nomal二次不等式(9) | Nomalガウス整数の平方和(8) | Nomal二項定理(8) | Nomal命題の真偽(8) | Nomal無限等比数列と微分の問題です。(7) | Nomal3の個数(7) | Nomal整数解(7) | Nomal複素数平面(6) | Nomal過去ログ記事を読んでいて(6) | Nomal水かさの問題です(中学受験)(6) | Nomal部分分数分解(6) | Nomal素数(6) | Nomal順列組合せ〜区別するものしないもの(6) | Nomal三角形の辺の長さ(6) | Nomal極形式(6) | Nomalフェルマーの最終定理の証明(6) | Nomal複数の点によって構成される多角形を相互の距離情報から類推する方法(6) | Nomal初等数学によるフェルマーの最終定理の証明(5) | Nomal積と和が一致する自然数の組(5) | Nomal複素数の関数(5) | Nomal素数積の評価〜ベルトラン・チェビシェフの定理(5) | Nomal群の問題(5) | UpDate無限和(4) | Nomal進数の表現(4) | Nomal高校数学 整数問題(4) | Nomal整数の表現の同値証明(4) | Nomal不等式(4) | Nomal係数(4) | Nomal整数の例(4) | Nomal式の値(4) | Nomal高校受験の問題です(4) | Nomalおすすめの本(4) | Nomal二重積分(4) | Nomal多項式(4) | Nomal確率(4) | Nomal大学数学統計学の問題(4) | Nomal複素数(4) | Nomal必要十分条件(4) | Nomal導関数(4) | NomalLambert W関数を用いた数式(4) | Nomal論理式(4) | Nomal放物線の標準形(4) | Nomallog(1+x)<√x(4) | Nomal円と3次関数(4) | Nomal因数分解(4) | Nomalカタラン数(4) | Nomal複素関数の部分分数分解(4) | Nomal全ての 整数解 等(4) | Nomal正射影再び(笑)(4) | Nomalなぜ2乗? 内積の意味は??(4) | Nomal極大と変曲(4) | Nomalsinの不等式(4) | Nomallogの計算(3) | Nomal極限(3) | Nomalこれだけで求められるの?(3) | Nomal二次方程式の定数を求める(3) | Nomal数学はゲーム(3) | Nomal複素数(3) | Nomal積分(3) | Nomal素数(3) | Nomal不等式(3) | Nomal数列の極限(3) | Nomal積分の応用(3) | Nomal複素数の問題(3) | Nomal辺の和の最小値(3) | Nomal角度(3) | Nomal必要十分条件(3) | Nomal三角関数(3) | Nomalベクトルの大きさ(3) | Nomal和の求め方がわかりません。(3) | Nomal極限(3) | Nomal三角形の角(3) | Nomalコラッツ予想について(3) | Nomalフィボナッチ数列について。(3) | Nomal円と曲線(3) | NomalΣと積分の交換(3) | Nomal2次方程式(3) | Nomal(削除)(3) | Nomal連立方程式(3) | Nomalピタゴラスの定理の簡単な証明(3) | Nomalリーマン積分可能性(3) | Nomal統計/区画幅について(3) | Nomal統計学についての質問(3) | Nomaltan(z) を z = π/2 中心にローラン展開する(2) | Nomal囲まれた面積(2) | Nomal複素数(2) | Nomal確率(2) | Nomal低レベルな問題ですいません(2) | Nomal環でしょうか(2) | Nomal速度(2) | Nomali^iについて(2) | Nomal円に内接する四角形(2) | Nomal場合の数(2) | Nomal質問(2) |



■記事リスト / ▼下のスレッド
■50312 / 親記事)  不等式
□投稿者/ グルンカ 一般人(1回)-(2020/04/17(Fri) 22:58:40)
    nが2以上の自然数のとき、
    Σ[k=1,n-1]1/sin(kπ/n)<n*log(n)
    であることの証明を教えて下さい。
引用返信/返信 [メール受信/OFF]

▽[全レス2件(ResNo.1-2 表示)]
■50313 / ResNo.1)  Re[1]: 不等式
□投稿者/ らすかる 一般人(24回)-(2020/04/18(Sat) 01:52:47)
    0<x<π/2でsinx>(2/π)xが成り立つ。
    nが奇数のとき
    Σ[k=1〜n-1]1/sin(kπ/n)
    =2Σ[k=1〜(n-1)/2]1/sin(kπ/n)
    <2Σ[k=1〜(n-1)/2]1/{(2/π)(kπ/n)}
    =nΣ[k=1〜(n-1)/2]1/k
    <n(∫[1/2〜(n-1)/2+1/2]dx/x)
    =n{log(n/2)-log(1/2)}
    =nlogn
    nが偶数のとき
    Σ[k=1〜n-1]1/sin(kπ/n)
    =1+2Σ[k=1〜n/2-1]1/sin(kπ/n)
    <1+2Σ[k=1〜n/2-1]1/{(2/π)(kπ/n)}
    =1+nΣ[k=1〜n/2-1]1/k
    <1+n(∫[1/2〜n/2-1+1/2]dx/x)
    =1+n{log((n-1)/2)-log(1/2)}
    =1+nlog(n-1)
    <nlogn (※)

    (※)
    1+nlog(n-1)<nlognは、
    f(x)=xlogx-(1+xlog(x-1))とおくと
    f'(x)<0, lim[x→∞]f(x)=0となることから言えます。

引用返信/返信 [メール受信/OFF]
■50314 / ResNo.2)  Re[2]: 不等式
□投稿者/ グルンカ 一般人(2回)-(2020/04/18(Sat) 10:03:39)
    ありがとうございます。
    全然分からなかったのでとても助かりました。
    一行目の不等式がポイントですね。
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-2]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■50272 / 親記事)  正射影:正三角形→2等辺三角形
□投稿者/ あすなろ 一般人(1回)-(2020/04/09(Thu) 00:53:32)
    図の問題を教えてください。
    射影された面積はすぐわかりますがcosθの求め方がさっぱりです。
    1辺がaの正三角形が、底辺1、2等辺が2の2等辺三角形になるわけですから、まず2等辺を維持しながら2辺のaが2になるような傾きは想像できるのですが、それから底辺を1にする傾きがわかりません。
734×403 => 250×137

1586361212.png
/178KB
引用返信/返信 [メール受信/OFF]

▽[全レス2件(ResNo.1-2 表示)]
■50273 / ResNo.1)  Re[1]: 正射影:正三角形→2等辺三角形
□投稿者/ らすかる 一般人(8回)-(2020/04/09(Thu) 02:45:05)
    B'C'=C'A'になるということはAB方向に縮みますので
    「CからABに下した垂線の長さ」=「C'からA'B'に下した垂線の長さ」
    となりますね。
    この垂線の長さは√{2^2-(1/2)^2}=√15/2ですから
    a=√15/2・2/√3=√5とわかります。
    cosθはA'B'/AB=1/√5となりますね。

引用返信/返信 [メール受信/OFF]
■50274 / ResNo.2)  Re[2]: 正射影:正三角形→2等辺三角形
□投稿者/ あすなろ 一般人(2回)-(2020/04/09(Thu) 06:08:11)
     おお、ありがとうございます。助かりました。
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-2]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■50264 / 親記事)  三角形
□投稿者/ 京都産業クラスター 一般人(1回)-(2020/03/31(Tue) 21:50:54)
    平面上に点O,A,B,Cがあり、
    OA=22
    OB=7
    OC=27
    AB=16
    BC=23
    でAとCはOBに関して反対にあるとき
    ACと30の大小を教えて下さい。
引用返信/返信 [メール受信/OFF]

▽[全レス2件(ResNo.1-2 表示)]
■50265 / ResNo.1)  Re[1]: 三角形
□投稿者/ らすかる 一般人(7回)-(2020/03/31(Tue) 23:26:06)
    三角関数は使って大丈夫ですか?
    cos∠OBA=(OB^2+AB^2-OA^2)/(2*OB*BA)=-179/224
    sin∠OBA=√{1-(cos∠OBA)^2}=3√2015/224
    cos∠OBC=(OB^2+BC^2-OC^2)/(2*OB*BC)=-151/322
    sin∠OBC=√{1-(cos∠OBC)^2}=3√8987/322
    cos∠ABC=cos(∠OBA+∠OBC)
    =cos∠OBA*cos∠OBC-sin∠OBA*sin∠OBC
    =(27029-9√18108805)/72128
    ∴AC=√(AB^2+BC^2-2*AB*BC*cos∠ABC)
    =√{(49901+9√18108805)/98}
    「√{(49901+9√18108805)/98} と 30 の大小関係」
    ⇔「(49901+9√18108805)/98 と 900 の大小関係」
    ⇔「49901+9√18108805 と 88200 の大小関係」
    ⇔「9√18108805 と 38299 の大小関係」
    ⇔「81*18108805 と 38299^2 の大小関係」
    ⇔「1466813205 と 1466813401 の大小関係」
    なので
    √{(49901+9√18108805)/98}<30
    すなわちAC<30
    実際の値は29.9999995648…

引用返信/返信 [メール受信/OFF]
■50266 / ResNo.2)  Re[2]: 三角形
□投稿者/ 京都産業クラスター 一般人(2回)-(2020/04/01(Wed) 00:24:15)
    ありがとうございます。
    とても助かりました。
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-2]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■50254 / 親記事)  数列の疑問
□投稿者/ JOC理事 一般人(1回)-(2020/03/20(Fri) 09:32:16)
    a[0]=1
    b[0]=0
    a[n+1]=(1/3)a[n]+(1/3)b[n]
    b[n+1]=(2/3)a[n]+(1/3)b[n]

    p[0]=0
    q[0]=0
    r[0]=1
    p[n+1]=(1/3)p[n]+(1/3)q[n]
    q[n+1]=(2/3)p[n]+(1/3)q[n]+(2/3)r[n]
    r[n+1]=(1/3)q[n]+(1/3)r[n]

    とします。

    r[n]-(1/3)Σ[k=0,n-1]b[k]r[n-1-k]

    の値は何になるのでしょうか?
引用返信/返信 [メール受信/OFF]

▽[全レス2件(ResNo.1-2 表示)]
■50255 / ResNo.1)  Re[1]: 数列の疑問
□投稿者/ らすかる 一般人(6回)-(2020/03/21(Sat) 06:53:05)
    上の漸化式を解くと
    b[n]={((1+√2)/3)^n-((1-√2)/3)^n}/√2
    下の漸化式を解くと
    r[n]={1+2(1/3)^n+(-1/3)^n}/4
    これを代入して計算して整理しまくったら
    (与式)=(1/3)^nとなりました。

引用返信/返信 [メール受信/OFF]
■50259 / ResNo.2)  Re[2]: 数列の疑問
□投稿者/ JOC理事 一般人(2回)-(2020/03/21(Sat) 13:52:51)
    有り難うございます。
    とても助かりました。
解決済み!
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-2]



■記事リスト / ▲上のスレッド
■50248 / 親記事)  eの極限
□投稿者/ ネイピア 一般人(1回)-(2020/03/16(Mon) 11:56:12)
    tを実数とするとき
    lim[n→∞]n{e^t-(1+t/n)^n}
    の求め方を教えて下さい。
引用返信/返信 [メール受信/OFF]

▽[全レス2件(ResNo.1-2 表示)]
■50249 / ResNo.1)  Re[1]: eの極限
□投稿者/ m 一般人(6回)-(2020/03/16(Mon) 20:10:53)
    と書きます。

    と置き換えることで

    を求めればokです。

    ロピタルを使えば機械的にできます。
    分子分母をそれぞれ一回微分すれば


    ここで


    だからの前の極限を求めたい。分子分母にをかけてと置き換えれば、


    ここで、もう一回ロピタル(=分子分母二階微分)すれば


    よって


    つまり



    途中を分母にかけるのでは別途考える必要があります。
    でもなら極限はになって、この場合も上の形になることがいえます。


引用返信/返信 [メール受信/OFF]
■50250 / ResNo.2)  Re[2]: eの極限
□投稿者/ ネイピア 一般人(2回)-(2020/03/17(Tue) 13:54:01)
    ありがとうございました。
解決済み!
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-2]






Mode/  Pass/

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

- Child Tree -
Edit By 数学ナビゲーター