数学ナビゲーター掲示板

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

■ 過去ログ検索の勧め⇒ここを読んでみてください
google検索

 
この掲示板の過去ログをgoogleで検索します。
検索条件:
現在のログを検索過去のログを検索
■ 2006/2/20より、累計:、本日:、昨日:
数式の記述方法
TeX入力ができます。 \[ TeX形式数式 \] あるいは,$ TeX形式数式 $ で数式を記述します。
 TeX形式数式には半角英数字のみです。詳しくは、ここを見てください。文字化けが発生したときはここを見てください。
■ 質問をする方は、回答者に失礼のないようにお願いします。
携帯電話でこの掲示板を見れるようにしました。⇒ここを見てください。
■ 24時間以内に作成されたスレッドは New で表示されます。
■ 24時間以内に更新されたスレッドは UpDate で表示されます。

記事リスト ( )内の数字はレス数
Nomalフェルマーの最終定理の簡単な証明9(25) | Nomal円を30度回転させた場合の結果が見たい。(17) | Nomal確率における情報(17) | Nomalプログラミング言語BASIC言語について。(14) | Nomal期待値(13) | Nomal論理を教えて下さい(12) | Nomal円錐台の断面積(9) | Nomal二次不等式(9) | Nomalガウス整数の平方和(8) | Nomal二項定理(8) | Nomal命題の真偽(8) | Nomal無限等比数列と微分の問題です。(7) | Nomal3の個数(7) | Nomal整数解(7) | Nomal複素数平面(6) | Nomal過去ログ記事を読んでいて(6) | Nomal水かさの問題です(中学受験)(6) | Nomal部分分数分解(6) | Nomal素数(6) | Nomal順列組合せ〜区別するものしないもの(6) | Nomal三角形の辺の長さ(6) | Nomal極形式(6) | Nomalフェルマーの最終定理の証明(6) | Nomal複数の点によって構成される多角形を相互の距離情報から類推する方法(6) | Nomal初等数学によるフェルマーの最終定理の証明(5) | Nomal積と和が一致する自然数の組(5) | Nomal複素数の関数(5) | Nomal素数積の評価〜ベルトラン・チェビシェフの定理(5) | Nomal群の問題(5) | Nomal進数の表現(4) | Nomal高校数学 整数問題(4) | Nomal整数の表現の同値証明(4) | Nomal不等式(4) | Nomal係数(4) | Nomal整数の例(4) | Nomal式の値(4) | Nomal高校受験の問題です(4) | Nomalおすすめの本(4) | Nomal二重積分(4) | Nomal多項式(4) | Nomal確率(4) | Nomal大学数学統計学の問題(4) | Nomal複素数(4) | Nomal必要十分条件(4) | Nomal導関数(4) | NomalLambert W関数を用いた数式(4) | Nomal論理式(4) | Nomal放物線の標準形(4) | Nomallog(1+x)<√x(4) | Nomal円と3次関数(4) | Nomal因数分解(4) | Nomalカタラン数(4) | Nomal複素関数の部分分数分解(4) | Nomal全ての 整数解 等(4) | Nomal正射影再び(笑)(4) | Nomalなぜ2乗? 内積の意味は??(4) | Nomal極大と変曲(4) | Nomalsinの不等式(4) | Nomal合同式の計算(4) | Nomallogの計算(3) | Nomal極限(3) | Nomalこれだけで求められるの?(3) | Nomal二次方程式の定数を求める(3) | Nomal数学はゲーム(3) | Nomal複素数(3) | Nomal積分(3) | Nomal素数(3) | Nomal不等式(3) | Nomal数列の極限(3) | Nomal積分の応用(3) | Nomal複素数の問題(3) | Nomal辺の和の最小値(3) | Nomal角度(3) | Nomal必要十分条件(3) | Nomal三角関数(3) | Nomalベクトルの大きさ(3) | Nomal和の求め方がわかりません。(3) | Nomal極限(3) | Nomal三角形の角(3) | Nomalコラッツ予想について(3) | Nomalフィボナッチ数列について。(3) | Nomal円と曲線(3) | NomalΣと積分の交換(3) | Nomal2次方程式(3) | Nomal(削除)(3) | Nomal連立方程式(3) | Nomalピタゴラスの定理の簡単な証明(3) | Nomalリーマン積分可能性(3) | Nomal統計/区画幅について(3) | Nomal統計学についての質問(3) | Nomaltan(z) を z = π/2 中心にローラン展開する(2) | Nomal囲まれた面積(2) | Nomal複素数(2) | Nomal確率(2) | Nomal低レベルな問題ですいません(2) | Nomal環でしょうか(2) | Nomal速度(2) | Nomali^iについて(2) | Nomal円に内接する四角形(2) | Nomal場合の数(2) | Nomal質問(2) |



■記事リスト / ▼下のスレッド
■50674 / 親記事)  フィボナッチ数列について。
□投稿者/ メラゾーム 一般人(1回)-(2021/03/19(Fri) 03:07:39)
    フィボナッチ数列 F[1]=1, F[2]=1, F[n+2]=F[n+1]+F[n] (n≧1) について、
    F[n] (n≠5) が素数 ならば F[n] ≡ ±1 (mod n) であることを示してください。 よろしくお願いします。
引用返信/返信 [メール受信/OFF]

▽[全レス3件(ResNo.1-3 表示)]
■50884 / ResNo.1)  Re[1]: フィボナッチ数列について。
□投稿者/ WIZ 一般人(8回)-(2021/07/05(Mon) 19:33:43)
    Wikipediaの「フィボナッチ数」や「フィボナッチ素数」を見ると以下の記述があります。
    # 若干表現は変更しています。
    L(a/p) はルジャンドルの記号とします。

    (1) n = 4 の場合を除いて、F[n] がフィボナッチ素数となる n は素数である。
    しかし、n が素数でも F[n] が素数になるとは限らない。

    (2) p が 2 でも 5 でもない素数のとき、F[p-L(5/p)] は p で割り切れる。

    (3) F[n−1]F[n+1]−F[n]^2 = (-1)^n

    以下、F[3] = 2 と F[4] = 3 と F[5] = 5 以外のフィボナッチ素数について考察します。

    (1)により、自然数 p に対して F[p] が素数ならば p も素数です。
    L(5/p) = 1 または L(5/p) = -1 なので、(2)より、F[p-1] または F[p+1] が p で割り切れます。
    つまり、F[p-1]F[p+1] は p で割り切れます。よって(3)と p が奇数であることより、
    F[p−1]F[p+1]−F[p]^2 = (-1)^p = -1
    ⇒ F[p]^2 ≡ 1 (mod p)
    ⇒ F[p] ≡ ±1 (mod p)
    となり、題意は肯定的に示されます。
    (F[3] = 2 と F[4] = 3 は別途示す必要がありますが、これは目視でわかりますよね。)

    スレ主さん(もう見てないと思うけど)も上記程度は分かった上での質問なのかもしれません。
    つまり、(1)(2)(3)の証明が分からないということかもしれません。
    まあ、(3)は F[n] の一般項の式から容易に導けるのではないかと思います。(確認してないけど)
    (2)は2次体 Q(√5) の整数環の性質から導けるかも? (希望的観測)
    (1)は F[n] の一般項の式から導けるかもしれない。(願望)
引用返信/返信 [メール受信/OFF]
■50888 / ResNo.2)  Re[1]: フィボナッチ数列について。
□投稿者/ WIZ 一般人(9回)-(2021/07/06(Tue) 21:06:24)
    F[n-1]F[n+1]-F[n]^2 = (-1)^n の証明

    n を 2 以上の自然数として G[n] = F[n-1]F[n+1]−F[n]^2 とします。
    G[2] = F[1]F[3]−F[2]^2 = 1*2-1^2 = 1 = (-1)^2

    k を 2 以上の自然数として G[k] = (-1)^k と仮定します。
    G[k+1] = F[k]F[k+2]-F[k+1]^2
    = (F[k+1]-F[k-1])(F[k]+F[k+1])-F[k+1]^2
    = F[k+1]F[k]+F[k+1]^2-F[k-1]F[k]-F[k-1]F[k+1]-F[k+1]^2
    = (F[k+1]-F[k-1])F[k]-F[k-1]F[k+1]
    = F[k]^2-F[k-1]F[k+1]
    = -G[k]
    = (-1)^(k+1)

    以上から数学的帰納法により 2 以上の自然数 n に対して
    G[n] = F[n-1]F[n+1]-F[n]^2 = (-1)^n が成立する。
引用返信/返信 [メール受信/OFF]
■50889 / ResNo.3)  Re[1]: フィボナッチ数列について。
□投稿者/ WIZ 一般人(11回)-(2021/07/06(Tue) 23:29:21)
    (A) フィボナッチ数の加法定理 F[m+n] = F[m]F[n+1]+F[m-1]F[n] の証明

    m, n は自然数で、m ≧ 2 とする。

    m = 2 の場合、F[1] = F[2] = 1 なので、
    F[2+n] = F[n+1]+F[n] = F[2]F[n+1]+F[2-1]F[n] となり加法定理は成立する。

    m = 3 の場合、F[2] = 1, F[3] = 2 なので、
    F[3+n] = F[n+2]+F[n+1] = (F[n+1]+F[n])+F[n+1] = 2F[n+1]+F[n] = F[3]F[n+1]+F[3-1]F[n]
    となり加法定理は成立する。

    k を 3 以上の自然数として、m = k と m = k-1 で加法定理の成立を仮定すると、
    F[(k+1)+n] = F[k+n]+F[(k-1)+n]
    = (F[k]F[n+1]+F[k-1]F[n])+(F[k-1]F[n+1]+F[k-2]F[n])
    = (F[k]+F[k-1])F[n+1]+(F[k-1]+F[k-2])F[n]
    = F[k+1]F[n+1]+F[k]F[n]
    となり、m = k+1 でも成立する。

    以上から、数学的帰納法により 2 以上の自然数 m と 任意の自然数 n に対して、
    F[m+n] = F[m]F[n+1]+F[m-1]F[n] が成立する。


    (B) フィボナッチ数の整除定理 m | n ならば F[m] | F[n] の証明

    n を 2 以上の自然数とすると、加法定理より、
    F[n+n] = F[n]F[n+1]+F[n-1]F[n] = F[n](F[n+1]+F[n-1])
    つまり、F[n] | F[2n] が成立する。

    k を 2 以上の自然数、u を自然数として、F[kn] = u*F[n] を仮定すると、
    F[(k+1)n] = F[n]F[kn+1]+F[n-1]F[kn]
    = F[n]F[kn+1]+F[n-1]*u*F[n]
    = F[n](F[kn+1]+F[n-1]*u)
    となり、F[n] | F[(k+1)n] が成立する。

    以上から、数学的帰納法により v と n を 2 以上の自然数とするとき
    F[n] | F[vn] が成立する。
    # n = 1 や v = 1 でも上記は成立しますが。


    (C) F[p] が素数ならば、p は奇素数であるか 4 であることの証明

    3 以上の自然数 a と 2 以上の自然数 b が存在して p = ab ならば、
    a < p であり、1 < F[a] < F[p] かつ整除定理より F[a] | F[p] となり
    F[p] は素数ではありえない。

    従って、F[p] が素数となるためには p は真の約数を持たないか、
    真の約数の値が 2 以下の場合である。

    真の約数を持たないということは、p は素数であるということてある。
    但し、F[2] = 1 は素数ではないので、p は奇素数である。
    真の約数の値が 2 以下ということは p は 2 の冪であることが必要だが、
    2^3 = 8 は 4 という真の約数を持つため、可能性は p = 2^2 のみとなるが、
    F[4] = 3 は素数である。

    以上から、F[p] が素数ならば、p は奇素数か 4 であるといえる。
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-3]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■50667 / 親記事)  円と曲線
□投稿者/ 油 一般人(1回)-(2021/03/14(Sun) 19:41:58)
    以下の条件が満たされるような実数 r >1 の範囲はどうなるのでしょうか?

    条件
    ある実数 a >0 が存在して、x-y平面上における
    曲線 : y=a*x^r -1 (x >0) と閉円板 : x^2+y^2≦1 の
    共通部分の長さが 2 より大きくなる。
引用返信/返信 [メール受信/OFF]

▽[全レス3件(ResNo.1-3 表示)]
■50668 / ResNo.1)  Re[1]: 円と曲線
□投稿者/ らすかる 一般人(18回)-(2021/03/16(Tue) 00:59:37)
    直感的には、「r>1」が答えのように思います。
    (つまりr>1を満たす任意のrに対して条件を満たすaが存在する)
    aが非常に大きいとき、曲線は(0,1)のすぐ近くと(0,-1)を結ぶ曲線に
    なりますね。このとき、
    「(0,1)でないことによる減少分」よりも「直線でないことによる増加分」
    の方が大きく、2を超えるように思います。
    直感ですからあてになりませんが。
引用返信/返信 [メール受信/OFF]
■50675 / ResNo.2)  Re[2]: 円と曲線
□投稿者/ 油分 一般人(1回)-(2021/03/22(Mon) 08:12:17)
    有り難うございます。

    ひとつだけ確認させて下さい。このツイートを見ると
    ttp://twitter.com/icqk3/status/1368856811143630849
    r=3/2 は 2 を超えないような感じのことが書いてあるのですが
    誤りでしょうか?
引用返信/返信 [メール受信/OFF]
■50676 / ResNo.3)  Re[3]: 円と曲線
□投稿者/ らすかる 一般人(20回)-(2021/03/22(Mon) 08:40:20)
    簡単に計算してみたところ、確かに超えないみたいですね。
    やはり私の直感はあてになりませんでした。
    私が上で書いたことは正しくありませんので無視して下さい。
    1.5以下では超えないようですね。1.6でも超えないかも。
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-3]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■50651 / 親記事)  Σと積分の交換
□投稿者/ 7610 一般人(1回)-(2021/03/07(Sun) 17:38:54)
      納k:1〜N]∫[x:-π〜π]f(x)cos(kx)dx

     = ∫[x:-π〜π]f(x)cos(x)dx + ∫[x:-π〜π]f(x)cos(2x)dx + …

     = ∫[x:-π〜π]f(x)dx納k:1〜N]cos(kx)

    という変形は可能ですか?

     可能ならば証明したいのですが

      ∫f(x)cos(kx)dx = -sin(kx)f(x) + ∫f'(x)sin(kx)dx

    ですから、右辺の第1項は定積分でゼロになるところまではわかりますが、それからがわかりません。


引用返信/返信 [メール受信/OFF]

▽[全レス3件(ResNo.1-3 表示)]
■50654 / ResNo.1)  Re[1]: Σと積分の交換
□投稿者/ X 一般人(7回)-(2021/03/07(Sun) 18:52:51)
    そのような変形はできません。
    定数でない被積分関数を積分の外に出すことは
    できないからです。
    変形前はxの関数ではないのに、変形後は
    xの関数になっているのは明らかに
    変ですよね。

    但し
    納k:1〜N]∫[x:-π〜π]f(x)cos(kx)dx
    =∫[x:-π〜π]f(x){納k:1〜N]cos(kx)}dx
    であれば、問題ありません。


引用返信/返信 [メール受信/OFF]
■50655 / ResNo.2)  Re[2]: Σと積分の交換
□投稿者/ 7610 一般人(3回)-(2021/03/07(Sun) 19:01:08)
    > 定数でない被積分関数を積分の外に出すことは
    できないからです。

    ですよねえ。実はさるサイトでもっと複雑なケースの積分だったのですが私自身が勘違いしたのかもしれません。
     素早い回答ありがとうございました。
引用返信/返信 [メール受信/OFF]
■50656 / ResNo.3)  Re[2]: Σと積分の交換
□投稿者/ 7610 一般人(4回)-(2021/03/07(Sun) 19:43:26)
    > 但し
    > 納k:1〜N]∫[x:-π〜π]f(x)cos(kx)dx
    > =∫[x:-π〜π]f(x){納k:1〜N]cos(kx)}dx
    > であれば、問題ありません。
    >
    > すみません。まさにこちらでした。ありがとう。
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-3]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■50491 / 親記事)  2次方程式
□投稿者/ KE 一般人(1回)-(2020/09/03(Thu) 12:19:10)
    次の問題をよろしくお願いします。

    「2次方程式x^2-6x+6=0の2つの解のうち、小さいほうの解の整数部分をa_1, 小数部分をb_1, 大きい方の解の整数部分をa_2,小数部分をb_2とおく(a_1,b_1,a_2,b_2>0)」

    問1 a_1,b_1,a_2,b_2を求めよ。
     
     →問1は分かります。

    問2 cosθ=1/(b_1b_2+a_1+a_2)とする。このとき,~sinθの値はcosθの何倍ですか。

     →問2を自分で解くと、cosθ=√3/9からsinθ=±√26/(3√3)となり、割り算すればよいことは分かるのですが、答えは±√26倍であっているのでしょうか。「±」が気になります。問題にはθの範囲はかいてありません。

引用返信/返信 [メール受信/OFF]

▽[全レス3件(ResNo.1-3 表示)]
■50492 / ResNo.1)  Re[1]: 2次方程式
□投稿者/ X 一般人(8回)-(2020/09/03(Thu) 12:47:20)
    それで問題ありません。
引用返信/返信 [メール受信/OFF]
■50493 / ResNo.2)  Re[1]: 2次方程式
□投稿者/ らすかる 一般人(14回)-(2020/09/03(Thu) 17:29:29)
    問2の問題文中のsinの左にある「~」は何か意味がありますか?
引用返信/返信 [メール受信/OFF]
■50495 / ResNo.3)  Re[2]: 2次方程式
□投稿者/ KE 一般人(2回)-(2020/09/06(Sun) 05:53:07)
    No50493に返信(らすかるさんの記事)
    > 問2の問題文中のsinの左にある「~」は何か意味がありますか?

    すみません。ただの入力ミスでした。
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-3]



■記事リスト / ▲上のスレッド
■50479 / 親記事)  (削除)
□投稿者/ -(2020/08/29(Sat) 12:05:53)
    この記事は(投稿者)削除されました
引用返信/返信 [メール受信/OFF]

▽[全レス3件(ResNo.1-3 表示)]
■50480 / ResNo.1)  Re[1]: 自然対数 e について
□投稿者/ らすかる 一般人(10回)-(2020/08/29(Sat) 17:17:12)
    n=1のとき成り立たないと思います。
引用返信/返信 [メール受信/OFF]
■50481 / ResNo.2)  (削除)
□投稿者/ -(2020/08/29(Sat) 17:44:46)
    この記事は(投稿者)削除されました
引用返信/返信 [メール受信/OFF]
■50483 / ResNo.3)  Re[3]: 自然対数 e について
□投稿者/ らすかる 一般人(11回)-(2020/08/29(Sat) 22:55:25)
    WolframAlphaでn=20まで計算したところ、n≧2では正の方から徐々に0に近づいていくようですので成り立ちそうではありますが、証明の方針が思い浮かびませんので(今のところ)証明できていません。
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-3]






Mode/  Pass/

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

- Child Tree -
Edit By 数学ナビゲーター