数学ナビゲーター掲示板

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

■ 過去ログ検索の勧め⇒ここを読んでみてください
google検索

 
この掲示板の過去ログをgoogleで検索します。
検索条件:
現在のログを検索過去のログを検索
■ 2006/2/20より、累計:、本日:、昨日:
数式の記述方法
TeX入力ができます。 \[ TeX形式数式 \] あるいは,$ TeX形式数式 $ で数式を記述します。
 TeX形式数式には半角英数字のみです。詳しくは、ここを見てください。文字化けが発生したときはここを見てください。
■ 質問をする方は、回答者に失礼のないようにお願いします。
携帯電話でこの掲示板を見れるようにしました。⇒ここを見てください。
■ 24時間以内に作成されたスレッドは New で表示されます。
■ 24時間以内に更新されたスレッドは UpDate で表示されます。

記事リスト ( )内の数字はレス数
Nomalフェルマーの最終定理の簡単な証明9(25) | Nomal円を30度回転させた場合の結果が見たい。(17) | Nomal確率における情報(17) | Nomalプログラミング言語BASIC言語について。(14) | Nomal期待値(13) | Nomal論理を教えて下さい(12) | Nomal円錐台の断面積(9) | Nomal二次不等式(9) | Nomalガウス整数の平方和(8) | Nomal二項定理(8) | Nomal命題の真偽(8) | Nomal無限等比数列と微分の問題です。(7) | Nomal3の個数(7) | Nomal整数解(7) | Nomal複素数平面(6) | Nomal過去ログ記事を読んでいて(6) | Nomal水かさの問題です(中学受験)(6) | Nomal部分分数分解(6) | Nomal素数(6) | Nomal順列組合せ〜区別するものしないもの(6) | Nomal三角形の辺の長さ(6) | Nomal極形式(6) | Nomalフェルマーの最終定理の証明(6) | Nomal複数の点によって構成される多角形を相互の距離情報から類推する方法(6) | Nomal初等数学によるフェルマーの最終定理の証明(5) | Nomal積と和が一致する自然数の組(5) | Nomal複素数の関数(5) | Nomal素数積の評価〜ベルトラン・チェビシェフの定理(5) | Nomal群の問題(5) | Nomal進数の表現(4) | Nomal高校数学 整数問題(4) | Nomal整数の表現の同値証明(4) | Nomal不等式(4) | Nomal係数(4) | Nomal整数の例(4) | Nomal式の値(4) | Nomal高校受験の問題です(4) | Nomalおすすめの本(4) | Nomal二重積分(4) | Nomal多項式(4) | Nomal確率(4) | Nomal大学数学統計学の問題(4) | Nomal複素数(4) | Nomal必要十分条件(4) | Nomal導関数(4) | NomalLambert W関数を用いた数式(4) | Nomal論理式(4) | Nomal放物線の標準形(4) | Nomallog(1+x)<√x(4) | Nomal円と3次関数(4) | Nomal因数分解(4) | Nomalカタラン数(4) | Nomal複素関数の部分分数分解(4) | Nomal全ての 整数解 等(4) | Nomal正射影再び(笑)(4) | Nomalなぜ2乗? 内積の意味は??(4) | Nomal極大と変曲(4) | Nomalsinの不等式(4) | Nomal合同式の計算(4) | Nomallogの計算(3) | Nomal極限(3) | Nomalこれだけで求められるの?(3) | Nomal二次方程式の定数を求める(3) | Nomal数学はゲーム(3) | Nomal複素数(3) | Nomal積分(3) | Nomal素数(3) | Nomal不等式(3) | Nomal数列の極限(3) | Nomal積分の応用(3) | Nomal複素数の問題(3) | Nomal辺の和の最小値(3) | Nomal角度(3) | Nomal必要十分条件(3) | Nomal三角関数(3) | Nomalベクトルの大きさ(3) | Nomal和の求め方がわかりません。(3) | Nomal極限(3) | Nomal三角形の角(3) | Nomalコラッツ予想について(3) | Nomalフィボナッチ数列について。(3) | Nomal円と曲線(3) | NomalΣと積分の交換(3) | Nomal2次方程式(3) | Nomal(削除)(3) | Nomal連立方程式(3) | Nomalピタゴラスの定理の簡単な証明(3) | Nomalリーマン積分可能性(3) | Nomal統計/区画幅について(3) | Nomal統計学についての質問(3) | Nomaltan(z) を z = π/2 中心にローラン展開する(2) | Nomal囲まれた面積(2) | Nomal複素数(2) | Nomal確率(2) | Nomal低レベルな問題ですいません(2) | Nomal環でしょうか(2) | Nomal速度(2) | Nomali^iについて(2) | Nomal円に内接する四角形(2) | Nomal場合の数(2) | Nomal質問(2) |



■記事リスト / ▼下のスレッド
■52390 / 親記事)  環でしょうか
□投稿者/ きんぴら5号 一般人(1回)-(2023/12/01(Fri) 14:31:39)
    自作問題です。iは虚数単位です。
    整数a,bがa≡b(mod2)のときg(a,b)=(a+bi)/2と表せる数全体をGとする。
    Gは環であるか?

    加減算について閉じていることは分かるのですが
    乗算について閉じているのか、いないのかが分かりません。

    整数c,dがc≡d(mod2)のときg(a,b)*g(c,d)={(ac-bd)+(ad+bc)i}/4ですので
    ac-bdとad+bcが共に偶数で、(ac-bd)/2と(ad+bc)/2がmod2で合同であれば良いのですが
    g(a,b)*g(c,d)∈Gを示すことも否定することもできていません。

    分かる方がいましたら教えてください。よろしくお願いいたします。
引用返信/返信 [メール受信/OFF]

▽[全レス2件(ResNo.1-2 表示)]
■52391 / ResNo.1)  Re[1]: 環でしょうか
□投稿者/ らすかる 一般人(1回)-(2023/12/01(Fri) 14:44:59)
    質問の意味を誤解しているかも知れませんが、
    {(1+i)/2}^2=(0+i)/2なので閉じていないのでは?

引用返信/返信 [メール受信/OFF]
■52392 / ResNo.2)  Re[1]: 環でしょうか
□投稿者/ きんぴら5号 一般人(2回)-(2023/12/01(Fri) 15:38:00)
    らすかる様返信ありがとうございます。
    質問した乗法に閉じているかの反例になっています。
    つまり、Gは環ではなかったということですね。(残念)
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-2]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■52372 / 親記事)  速度
□投稿者/ waka 一般人(4回)-(2023/11/03(Fri) 09:56:29)
    よろしくお願いいたします。
    問題
     表面積Sが4πcm^2/sの一定の割合で増加している球がある。半径が10cmになった瞬間において、次のものを求めよ。
    (1)半径の増加する速度

    表面積の増加を始めてt秒後の球の半径をrcm, 表面積をScm^2とする。

    dS/dt=4πと解答に書いてあるのですが、dS/dtがなぜ4πになるのかわかりません。基本的なことだとは思うのですがよろしくお願いします。


引用返信/返信 [メール受信/OFF]

▽[全レス2件(ResNo.1-2 表示)]
■52373 / ResNo.1)  Re[1]: 速度
□投稿者/ WIZ 一般人(7回)-(2023/11/03(Fri) 12:50:57)
    べき乗演算子^は四則演算より優先度が高いものとします。
    「s」は「秒」の意味と解釈します。

    「表面積Sが4πcm^2/sの一定の割合」を数式で表すと「dS/dt = 4π」となります。
    dS/dtは時間tに対する表面積Sの変化率を表しているからです。
    勿論、表面積Sの単位は「cm^2」で、時間tの単位は「「s(秒)」です。

    以下余談

    半径をr[cm]とすると、表面積はS = 4πr^2[cm^2]ですから、
    4π = dS/dt = (dS/dr)(dr/dt) = ((d/dt)4πr^2)(dr/dt) = (8πr)(dr/dt)
    ⇒ dr/dt = 4π/(8πr) = 1/(2r)

    よって、r = 10[cm]の時の半径の増加速度はdr/dt = 1/(2*10) = 1/20[cm/s]
引用返信/返信 [メール受信/OFF]
■52374 / ResNo.2)  Re[2]: 速度
□投稿者/ waka 一般人(5回)-(2023/11/03(Fri) 17:45:02)
    ありがとうございました。
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-2]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■52368 / 親記事)  i^iについて
□投稿者/ たぬき 一般人(1回)-(2023/10/23(Mon) 22:19:11)
    オイラーの公式によりi=e^(iπ/2)だから、
    i^i=(e^(iπ/2))^i=e^((iπ/2)*i)=e^(-π/2)だと思います。

    一方、指数法則よりa≠0に対して(a^b)^c=a^(bc)=(a^c)^bなので、
    a=e,c=0とすると、(e^b)^0=e^(b*0)=(e^0)^bですが、
    (e^b)^0=1かつe^(b*0)=e^0=1なので(e^0)^b=1^b=1だと思います。
    上記を使うと(i^i)^4=(i^4)^i=1^i=1となるので、
    i^iは1の4乗根の±1か±iのどれかということになり、
    e^(-π/2)に一致しません。

    どこが間違っているのでしょうか?
引用返信/返信 [メール受信/OFF]

▽[全レス2件(ResNo.1-2 表示)]
■52369 / ResNo.1)  Re[1]: i^iについて
□投稿者/ らすかる 一般人(25回)-(2023/10/23(Mon) 23:25:39)
    (a^b)^c=a^(bc)=(a^c)^bという指数法則は
    ・aが0以外の実数かつbとcが整数
    ・a>0かつbとcが実数
    のときは成り立ちますが、それ以外の時は一般に成り立ちません。
    (つまり虚数には使えません。)

    i^i=e^(-π/2)も違います。
    i^i=e^(ilogi)=e^{i(log|i|+iargi)}=e^{i(i(π/2+2nπ))}=e^(-π/2-2nπ)
    のように多価になります。

    1^i=1も違います。
    1^i=e^(ilog1)=e^{i(log|1|+iarg1)}=e^{i(i(2nπ)}=e^(-2nπ)
    のように、これも多価になります。

引用返信/返信 [メール受信/OFF]
■52370 / ResNo.2)  Re[1]: i^iについて
□投稿者/ たぬき 一般人(2回)-(2023/10/23(Mon) 23:45:55)
    指数関数は周期2πiを持ち、対数関数は複素数では多価関数となるのを忘れていました。
    回答ありがとうございました。
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-2]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■52352 / 親記事)  円に内接する四角形
□投稿者/ 平松 一般人(1回)-(2023/10/10(Tue) 14:39:51)
    円に面積が4の四角形が内接しており、その四角形のどこか隣り合う二辺はどちらも長さが1である。
    このような状況において考えうる円の直径の最小の値はいくらになるのか教えて下さい。
引用返信/返信 [メール受信/OFF]

▽[全レス2件(ResNo.1-2 表示)]
■52353 / ResNo.1)  Re[1]: 円に内接する四角形
□投稿者/ らすかる 一般人(21回)-(2023/10/10(Tue) 15:25:14)
    AB=BC=1,AC=2aとすると△ABCの外接円の半径は1/{2√(1-a^2)}となり
    円に内接する四角形の面積Sの範囲は
    a√(1-a^2)<S≦a/√(1-a^2)
    a/√(1-a^2)=4を解くとa^2=16/17なので
    円の直径の最小値は1/√(1-a^2)にこの値を代入して√17

引用返信/返信 [メール受信/OFF]
■52354 / ResNo.2)  Re[2]: 円に内接する四角形
□投稿者/ 平松 一般人(2回)-(2023/10/10(Tue) 17:49:16)
    なるほど…たしかにおっしゃる通りですね。
    全然気づきませんでしたが、こう考えれば簡単ですね。
    ありがとうございました。
解決済み!
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-2]



■記事リスト / ▲上のスレッド
■52330 / 親記事)  場合の数
□投稿者/ 山梨大学の問題です 一般人(1回)-(2023/09/24(Sun) 10:48:58)
    1から10の整数から重複せずに4つの整数を選ぶ
    4つの整数の和が20以下になる選び方は何通りか

    出来るだけ簡単で後から数え忘れの心配が襲ってこないような方法を教えて下さい
引用返信/返信 [メール受信/OFF]

▽[全レス2件(ResNo.1-2 表示)]
■52331 / ResNo.1)  Re[1]: 場合の数
□投稿者/ らすかる 一般人(15回)-(2023/09/24(Sun) 15:50:44)
    4つの整数を選ぶ方法は全部で10C4=210通り
    a,b,c,dを選んで合計がnになったとき、
    11-a,11-b,11-c,11-dを選べば合計は44-(a+b+c+d)=44-nとなるので
    (合計が10である組の個数)=(合計が34である組の個数)
    (合計が11である組の個数)=(合計が33である組の個数)
    (合計が12である組の個数)=(合計が32である組の個数)
    ・・・
    (合計が21である組の個数)=(合計が23である組の個数)
    となる。従って合計が20以下になる組の個数は
    {210-(合計が22である組の個数)}÷2-(合計が21である組の個数)
    で求められるから、合計が21、22となる組の個数を調べればよい。
    合計が22になる組は
    (10,9,2,1)(10,8,3,1)(10,7,4,1)(10,7,3,2)(10,6,5,1)(10,6,4,2)(10,5,4,3)
    (9,8,4,1)(9,8,3,2)(9,7,5,1)(9,7,4,2)(9,6,5,2)(9,6,4,3)
    (8,7,6,1)(8,7,5,2)(8,7,4,3)(8,6,5,3)(7,6,5,4)の18通り
    合計が21になる組は
    (10,8,2,1)(10,7,3,1)(10,6,4,1)(10,6,3,2)(10,5,4,2)
    (9,8,3,1)(9,7,4,1)(9,7,3,2)(9,6,5,1)(9,6,4,2)(9,5,4,3)
    (8,7,5,1)(8,7,4,2)(8,6,5,2)(8,6,4,3)
    (7,6,5,3)の16通り
    ∴(210-18)÷2-16=80通り

引用返信/返信 [メール受信/OFF]
■52332 / ResNo.2)  Re[2]: 場合の数
□投稿者/ 山梨大学の問題です 一般人(3回)-(2023/09/25(Mon) 17:08:21)
    ありがとうございます
    とても分かりやすくてびっくりしました
解決済み!
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-2]






Mode/  Pass/

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

- Child Tree -
Edit By 数学ナビゲーター