数学ナビゲーター掲示板

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

■49162 / 親記事)  漸化式の項を減らす
  
□投稿者/ ばすたおる 一般人(1回)-(2019/04/05(Fri) 14:03:29)
    三項間漸化式で定まる数列a[n]
    a[1]=x
    a[2]=y
    a[n+2]=pa[n+1]+qa[n] (n≧1)
    を、無理やり二項間の漸化式
    a[1]=x
    a[n+1]=ra[n]+s√(ta[n]^2+ua[n]+v) (n≧1)
    にするのはどうすればよいのでしょうか?
引用返信/返信 [メール受信/OFF] 削除キー/
■49164 / ResNo.1)  Re[1]: 漸化式の項を減らす
□投稿者/ らすかる 一般人(10回)-(2019/04/05(Fri) 15:42:33)
    例えばx=1,y=0,p=q=1のとき
    a[n]={1,0,1,1,2,3,…}
    なので
    a[n+1]=ra[n]+s√(ta[n]^2+ua[n]+v)により
    n=1のとき 0=r+s√(t+u+v)
    n=3のとき 1=r+s√(t+u+v)
    これは矛盾なので
    一般に(r,s,t,u,vがnに依存しない定数ならば)
    a[n+1]=ra[n]+s√(ta[n]^2+ua[n]+v)
    と変形することは出来ないと思います。

引用返信/返信 [メール受信/OFF] 削除キー/
■49171 / ResNo.2)  Re[2]: 漸化式の項を減らす
□投稿者/ ばすたおる 一般人(2回)-(2019/04/08(Mon) 02:42:12)
    a[1]=1
    a[2]=3
    a[n+2]=4a[n+1]-a[n]
    という数列が
    a[1]
    a[n+1]=2a[n]+√(3a[n]^2-2)
    と表されるのは偶然なのでしょうか?
引用返信/返信 [メール受信/OFF] 削除キー/
■49173 / ResNo.3)  Re[3]: 漸化式の項を減らす
□投稿者/ らすかる 一般人(11回)-(2019/04/08(Mon) 05:44:02)
    2019/04/08(Mon) 10:39:38 編集(投稿者)

    上に反例がありますので、「偶然」その式で表せるような
    他の条件がそろっている、ということになりますね。
    a[n+1]=ra[n]+s√(ta[n]^2+ua[n]+v)という式では
    ある項から次の項が唯一に決まりますので、
    数列中に同じ値が2回以上出てきて続く値が異なる場合は
    明らかにこの式では表せません。
    ただし、数列中に同じ値が出現しない場合で、
    さらに一定の条件のもとでは
    r=p/2
    s=1
    t=p^2/4+q
    u=-(q+1)(qx^2+pxy-y^2)/(x-y)
    v=(qx+y)(qx^2+pxy-y^2)/(x-y)
    としてa[n+1]=ra[n]+s√(ta[n]^2+ua[n]+v)
    と表せるようですが、
    どういう条件のときにOKかは調べていません。

引用返信/返信 [メール受信/OFF] 削除キー/
■49177 / ResNo.4)  Re[4]: 漸化式の項を減らす
□投稿者/ らすかる 一般人(12回)-(2019/04/08(Mon) 14:44:17)
    上の式が成り立つ条件を少し調べました。
    少なくとも
    q=-1 または p+q=1 または qx^2+pxy-y^2=0
    のいずれかを満たさないとうまくいかないようです。
    しかしそれは必要条件であり、
    さらに各kに対してa[k+1]≧(p/2)a[k]が成り立つような
    数列になっている必要があります。

引用返信/返信 [メール受信/OFF] 削除キー/



スレッド内ページ移動 / << 0 >>

このスレッドに書きこむ

Mode/  Pass/

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

- Child Tree -
Edit By 数学ナビゲーター