数学ナビゲーター掲示板

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

■50106 / 親記事)  4次関数
  
□投稿者/ 製薬希望 一般人(1回)-(2019/10/20(Sun) 12:41:56)
    xy平面上の4次関数 y=f(x)=x^4+ax^3+bx^2+cx+d が、
    x=α, β (α<β) で極小になり、 x=γ で極大になるとする。
    さらに3つの極値におけるf(x)の接線が等間隔に並ぶものとする。
    このとき (β-α)/(γ-α) の値を求めよ。

    という問題を教えて下さい。よろしくお願いします。
引用返信/返信 [メール受信/OFF] 削除キー/
■50109 / ResNo.1)  Re[1]: 4次関数
□投稿者/ らすかる 一般人(38回)-(2019/10/21(Mon) 05:55:07)
    まずf(α)>f(β)である場合を考える。
    f(x)を平行移動しても(β-α)/(γ-α)の値は変わらないので
    α=0,f(α)=0となるように平行移動し、その結果を
    g(x)=(x^2)(x-p)(x-q) (0=α<γ<p<β<q)
    とおく。
    このときα=0なのでβ/γを求めればよい。
    g'(x)=4x^3-3(p+q)x^2+2pqxだが今後p+qとpqは頻出なのでu=p+q,v=pqとおく。
    g'(x)=4x^3-3ux^2+2vx
    g'(x)=0の3解はx=0,{3u±√(9u^2-32v)}/8なので
    β={3u+√(9u^2-32v)}/8, γ={3u-√(9u^2-32v)}/8となる。
    3接線が等間隔という条件からg(β)+g(γ)=0
    g(x)=x^4-ux^3+vx^2なので
    g(β)+g(γ)=β^4+γ^4-u(β^3+γ^3)+v(β^2+γ^2)=0 … (1)
    β,γはg'(x)=0の解なので
    4β^3=3uβ^2-2vβ, 4γ^3=3uγ^2-2vγ
    これを使って(1)の次数下げを行い、さらに
    β+γ=3u/4, βγ=v/2 とそれから得られる
    β^2+γ^2=(3u/4)^2-vを代入して整理すると
    27u^4-144u^2v+128v^2=0
    これより16v=3(3±√3)u^2
    (p+q)^2≧4pqから16v≦4u^2なので
    適解は16v=3(3-√3)u^2
    よって
    β={3u+√(9u^2-32v)}/8
    ={3u+√(9u^2-6(3-√3)u^2)}/8
    ={3+√(6√3-9)}u/8
    γ={3u-√(9u^2-32v)}/8
    ={3-√(6√3-9)}u/8
    従ってβ/γ={3+√(6√3-9)}/{3-√(6√3-9)}
    ={1+√3+√(2√3)}/2
    f(α)<f(β)の場合は左右反転すればよいので
    1+1/{(β/γ)-1}
    ={1+√(3+2√3)}/2

    以上により、(β-α)/(γ-α)の値は
    f(α)<f(β)<f(γ)のとき {1+√(3+2√3)}/2
    f(β)<f(α)<f(γ)のとき {1+√3+√(2√3)}/2


引用返信/返信 [メール受信/OFF] 削除キー/
■50114 / ResNo.2)  Re[2]: 4次関数
□投稿者/ らすかる 一般人(40回)-(2019/10/22(Tue) 01:14:36)
    実例
    例えばf(x)=x^4+ax^3+bx^2+cx+dにおいて
    a=-4√√(15√√108+27√√12)/3, b=(√3-1)√(5√√108+9√√12), c=d=0
    すなわち
    f(x)=x^4-(4√√(15√√108+27√√12)/3)x^3+((√3-1)√(5√√108+9√√12))x^2
    のとき
    f'(x)=4x^3-(4√√(15√√108+27√√12))x^2+2((√3-1)√(5√√108+9√√12))x
    となりf'(x)=0の解は小さい順に
    α=0
    γ={3-√(6√3-9)}√√(15√√108+27√√12)/6
    β={3+√(6√3-9)}√√(15√√108+27√√12)/6
    このとき
    f(α)=0, f(γ)=1, f(β)=-1なので接線は等間隔となり
    (β-α)/(γ-α)={1+√3+√(2√3)}/2
    となります。
引用返信/返信 [メール受信/OFF] 削除キー/
■50116 / ResNo.3)  Re[3]: 4次関数
□投稿者/ 製薬希望 一般人(2回)-(2019/10/23(Wed) 14:44:06)
    とてもよく分かりました。意外と計算が大変で驚きました。
    紹介していただいた実例自体が面白い問題になりそうです。
    このたびは教えていただき有り難うございました。
解決済み!
引用返信/返信 [メール受信/OFF] 削除キー/



スレッド内ページ移動 / << 0 >>

このスレッドに書きこむ

Mode/  Pass/

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

- Child Tree -
Edit By 数学ナビゲーター