[]-50510/親
z^5 = -1 を解く
Megumi

 z^5 = 1 と同じように解いたのですが、これでいいのでしょうか?
 
  z = r(cosθ+isinθ)    (r、θは実数)

  z^5 = r^5(cosθ+isinθ)^5
    = r^5(cos5θ+isin5θ)
  -1 = -1 + 0i = 1(cosπ + isin0)
 実部と虚部を比較して
  r^5 = 1, 5θ = (2n+1)π  (n = 0, 1, 2, 3, 4)
 したがって
  r = 1
  θ = π/5, 3π/5, 5π/5 = π/5, 7π/5, 9π/5
 ゆえに
  z = 1,
  cos(π/5) + isin(π/5) = e^(iπ/5)    重解?
  cos(3π/5) + isin(3π/5) = e^(i3π/5)
  cos(7π/5) + isin(7π/5) = e^(i7π/5)
  cos(9π/5) + isin(9π/5) = e^(i9π/5)


09/25 09:42
[|]
レスを書く
1番最初のレス
レス古い順
▽レス(2)1-2
No50512
Re[2]: z^5 = -1 を解く

Megumi
(09/25 11:36)
No50511
Re[1]: z^5 = -1 を解く

らすかる
(09/25 11:20)
Child K-Tai