[戻]-50510/親
z^5 = -1 を解く
Megumi
z^5 = 1 と同じように解いたのですが、これでいいのでしょうか?
z = r(cosθ+isinθ) (r、θは実数)
z^5 = r^5(cosθ+isinθ)^5
= r^5(cos5θ+isin5θ)
-1 = -1 + 0i = 1(cosπ + isin0)
実部と虚部を比較して
r^5 = 1, 5θ = (2n+1)π (n = 0, 1, 2, 3, 4)
したがって
r = 1
θ = π/5, 3π/5, 5π/5 = π/5, 7π/5, 9π/5
ゆえに
z = 1,
cos(π/5) + isin(π/5) = e^(iπ/5) 重解?
cos(3π/5) + isin(3π/5) = e^(i3π/5)
cos(7π/5) + isin(7π/5) = e^(i7π/5)
cos(9π/5) + isin(9π/5) = e^(i9π/5)
09/25 09:42
[編|消]
レスを書く
1番最初のレス
レス古い順
▽レス(2)1-2
No50512
Re[2]: z^5 = -1 を解く
Megumi
(09/25 11:36)
No50511
Re[1]: z^5 = -1 を解く
らすかる
(09/25 11:20)
Child K-Tai