数学ナビゲーター掲示板

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

[ 最新記事及び返信フォームをトピックトップへ ]

■50371 / inTopicNo.1)  連立微分方程式
  
□投稿者/ gunma 一般人(1回)-(2020/06/16(Tue) 15:15:36)
    x′1 =−5x1 +4x2,
    x′2 =−9x1 +7x2 +te^t
    解答をお願いします。
引用返信/返信 [メール受信/OFF] 削除キー/
■50376 / inTopicNo.2)  Re[1]: 連立微分方程式
□投稿者/ WIZ 一般人(2回)-(2020/06/17(Wed) 10:31:59)
    u = u(t) = x1(t), v = v(t) = x2(t) とおきます。

    u' = -5u+4v・・・・・(1)
    v' = -9u+7v+t(e^t)・・・・・(2)

    (1)より、
    v = (1/4)(u'+5u)・・・・・(3)
    v' = (1/4)(u''+5u')・・・・・(4)

    (3)(4)を(2)に代入して、
    (1/4)(u''+5u') = -9u+7(1/4)(u'+5u)+t(e^t)
    ⇒ u''+5u' = -36u+7(u'+5u)+4t(e^t)
    ⇒ u''-2u'+u = 4t(e^t)
    ⇒ (u''-u')-(u'-u) = 4t(e^t)
    ⇒ {(u'-u)(e^(-t))}' = 4t
    ⇒ (u'-u)(e^(-t)) = 2t^2+C (Cは積分定数)
    ⇒ {u(e^(-t))}' = 2t^2+C
    ⇒ u(e^(-t)) = (2/3)t^3+Ct+D (Dは積分定数)
    ⇒ u = (e^t){(2/3)t^3+Ct+D}

    検算
    u' = (e^t){(2/3)t^3+Ct+D}+(e^t){2t^2+C} = (e^t){(2/3)t^3+2t^2+Ct+C+D}
    u'' = (e^t){(2/3)t^3+2t^2+Ct+C+D}+(e^t){2t^2+4t+C} = (e^t){(2/3)t^3+4t^2+(C+4)t+2C+D}
    {u''-2u'+u}(e^(-t)) = {(2/3)t^3+Ct+D}-2{(2/3)t^3+2t^2+Ct+C+D}+{(2/3)t^3+4t^2+(C+4)t+2C+D} = 4t
    OK!

    上記結果を(3)に代入して、
    v = (1/4)(e^t){{(2/3)t^3+2t^2+Ct+C+D}+5{(2/3)t^3+Ct+D}}
    = (1/4)(e^t){(12/3)t^3+2t^2+6Ct+C+6D}
    = (e^t){t^3+(1/2)t^2+(3/2)Ct+(C+6D)/4}

    検算
    v' = (e^t){t^3+(1/2)t^2+(3/2)Ct+(C+6D)/4}+(e^t){3t^2+t+(3/2)C}
    = (e^t){t^3+(7/2)t^2+(3C/2+1)t+(7C+6D)/4}

    -9u+7v+t(e^t) = (e^t){-9{(2/3)t^3+Ct+D}+7{t^3+(1/2)t^2+(3/2)Ct+(C+6D)/4}+t}
    = (e^t){-6t^3-9Ct-9D+7t^3+(7/2)t^2+(21/2)Ct+(7C+42D)/4+t}
    = (e^t){t^3+(7/2)t^2+(3C/2+1)t+(7C+6D)/4}
    OK!
引用返信/返信 [メール受信/OFF] 削除キー/



トピック内ページ移動 / << 0 >>

このトピックに書きこむ

Mode/  Pass/

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

- Child Tree -
Edit By 数学ナビゲーター