数学ナビゲーター掲示板

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

[ 最新記事及び返信フォームをトピックトップへ ]

■50427 / inTopicNo.1)  ベクトル解析のスカラー場について
  
□投稿者/ Fav. 一般人(2回)-(2020/08/05(Wed) 21:47:04)
    xyz空間内のスカラー場f,ℊと領域Dについて
    ∫∫∫D(f∇^2ℊ-ℊ∇^2f)dV=∫∫∂D(f grad ℊ-ℊ grad f)・dS
    を示せという問題も分からなくて困っています。
    お願いします!
    ガウスの法則とdiv(fu)=(grad f)・u+f(div u)という式を使うらしいのですがどう使うのかがわかりません
引用返信/返信 [メール受信/OFF] 削除キー/
■50429 / inTopicNo.2)  Re[1]: ベクトル解析のスカラー場について
□投稿者/ X 一般人(3回)-(2020/08/05(Wed) 21:58:26)
    2020/08/05(Wed) 22:02:31 編集(投稿者)

    ガウスの法則ではなくてガウスの発散定理ですね。

    証明すべき等式において
    &#8458

    φ
    と解釈して方針を。

    ガウスの発散定理により
    (右辺)=∫∫∫[D]div(fgradφ-φgradf)dV
    =∫∫∫[D]{div(fgradφ)-div(φgradf)}dV
    後は{}内の第一項、第二項それぞれに対して
    アップされている等式である
    div(f↑u)=(grad f)・↑u+f(div↑u)
    を適用します。

    等式の適用で混乱しているかもしれないので
    ヒントとして念のため書いておきますが
    grad f、gradφ
    はベクトルです。
引用返信/返信 [メール受信/OFF] 削除キー/
■50432 / inTopicNo.3)  Re[2]: ベクトル解析のスカラー場について
□投稿者/ 絶対といてやるマン 一般人(2回)-(2020/08/08(Sat) 03:04:28)
    理解できました。
    ありがとうございます!!
引用返信/返信 [メール受信/OFF] 削除キー/



トピック内ページ移動 / << 0 >>

このトピックに書きこむ

Mode/  Pass/

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

- Child Tree -
Edit By 数学ナビゲーター