数学ナビゲーター掲示板

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

[ 最新記事及び返信フォームをトピックトップへ ]

■50525 / inTopicNo.1)  複素積分
  
□投稿者/ Megumi 一般人(11回)-(2020/10/12(Mon) 15:34:35)
     添付図の問題でとりあえず(1)について教えて下さい。
    z = e^it
    dz = ie^it dt

    ∫c1 1/z dz = ∫[-π→π](1/e^it) ie^it dt

    = i[t][-π→π] = -2πi

    ∫c1 1/z^2 dz = ∫[-π→π](1/(e^it)^2) ie^it dt
    = i∫[-π→π]e^(-it) dt
    = -[e^(-it)][-π→π]
    = -( e^(iπ) - e^(-iπ) )
    = - ( 2isin(π) ) = 0

     上記の解答がダメな理由を教えて下さい。本の解答は

    ∫c1 1/z dz = -πi
    ∫c1 1/z^2 dz = 2i

    となっています。

1388×566 => 250×101

1602484475.png
/99KB
引用返信/返信 [メール受信/OFF] 削除キー/
■50526 / inTopicNo.2)  Re[1]: 複素積分
□投稿者/ Megumi 一般人(12回)-(2020/10/12(Mon) 19:37:34)
    2020/10/12(Mon) 20:34:55 編集(投稿者)

     一応自己解決(笑)。
     たぶん α=-i、β=i の誤植だろうと思います。

引用返信/返信 [メール受信/OFF] 削除キー/
■50527 / inTopicNo.3)  Re[1]: 複素積分
□投稿者/ X 一般人(3回)-(2020/10/13(Tue) 22:29:24)
    誤植ではありません。

    (1)(2)ともに半円の経路積分であって
    円周の周回積分ではありません。
    その点に注意してもう一度計算を
    見直してみましょう。
引用返信/返信 [メール受信/OFF] 削除キー/



トピック内ページ移動 / << 0 >>

このトピックに書きこむ

Mode/  Pass/

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

- Child Tree -
Edit By 数学ナビゲーター