数学ナビゲーター掲示板
HOME
HELP
新規作成
新着記事
ツリー表示
スレッド表示
トピック表示
発言ランク
ファイル一覧
検索
過去ログ
[
最新記事及び返信フォームをトピックトップへ
]
[ トピック内全2記事(1-2 表示) ] <<
0
>>
■52663
/ inTopicNo.1)
漸化式と不等式
▼
■
□投稿者/ 数列
一般人(3回)-(2025/01/09(Thu) 17:16:37)
a[0]=1,a[1]=1/2,
(n+1)a[n+1]=(n+ 1/2)a[n] -na[n-1]
のとき,
a[n]^2>a[n+1]a[n-1]
の証明を教えて下さい.
引用返信
/
返信
[メール受信/OFF]
削除キー/
編集
削除
■52700
/ inTopicNo.2)
Re[1]: 漸化式と不等式
▲
▼
■
□投稿者/ WIZ
一般人(2回)-(2025/03/02(Sun) 21:45:52)
2025/03/02(Sun) 21:50:38 編集(投稿者)
べき乗演算子^は四則演算より優先度が高いものとする。
また、nは自然数で、以下の漸化式と解釈して回答します。
(n+1)a[n+1] = (n+(1/2))a[n]-n*a[n-1]
⇒ a[n] = {(n+1)a[n+1]+n*a[n-1]}/(n+1/2)
⇒ a[n]^2 = {((n+1)^2)a[n+1]^2+2(n+1)n*a[n+1]a[n-1]+(n^2)a[n-1]^2}/{(n+1/2)^2}
⇒ a[n]^2-a[n+1]a[n-1] = {((n+1)^2)a[n+1]^2+((2n^2+2n)-(n^2+n+1/4))a[n+1]a[n-1]+(n^2)a[n-1]^2}/{(n+1/2)^2}
ここで、上記の右辺分母は正ですから、左辺と右辺分子の符号は同じです。
{上記右辺分子} = ((n+1)^2)a[n+1]^2+(n^2+n-1/4)a[n+1]a[n-1]+(n^2)a[n-1]^2
= ((n+1)^2)a[n+1]^2+2(n/2+1/2-1/(8n))a[n+1]*n*a[n-1]+(n^2)a[n-1]^2
= ((n+1)^2-(n/2+1/2-1/(8n))^2)a[n+1]^2+{(n/2+1/2-1/(8n))a[n+1]+n*a[n-1]}^2
= (n/2+1/2+1/(8n))(3n/2+3/2-1/(8n))a[n+1]^2+{(n/2+1/2-1/(8n))a[n+1]+n*a[n-1]}^2
≧ 0
上記で等号が成立するのは、(n/2+1/2+1/(8n))(3n/2+3/2-1/(8n)) > 0であることから、
a[n+1]^2 = 0 かつ {(n/2+1/2-1/(8n))a[n+1]+n*a[n-1]}^2 = 0 のときであり、
整理すると a[n+1] = 0 かつ a[n-1] = 0 の場合です。
また、この場合、漸化式から a[n] = 0 です。
更に a[n] = 0 かつ a[n+1] = 0 ならば、漸化式より a[n+2] 以降の全ての項が0となります。
以下、連続する2項が0にはなり得ないことを示します。
a[0] ≠ 0 かつ a[1] ≠ 0 なので、mを2以上の自然数として a[m-1] ≠ 0 かつ a[m] = 0 であると仮定します。
漸化式から、(m+1)a[m+1] = m*a[m-1] つまり a[m+1] ≠ 0 となります。
同様に漸化式から、(m+2)a[m+2] = (m+1+1/2)a[m+1] つまり a[m+2] ≠ 0 となります。
a[m+3] = 0 か a[m+3] ≠ 0 かは漸化式からは決定できませんが、
a[m+3] 以降で最初に 0 となる項を a[p] とすれば、a[p-1] ≠ 0 ですので、
上記の「a[m-1] ≠ 0 かつ a[m] = 0 である〜」の論法を繰り返すことにより、
a[p+1] ≠ 0 かつ a[p+2] ≠ 0 と言えますので、連続した2項が0になることはないと言えます。
以上から、不等式で等号は成立せず a[n]^2-a[n+1]a[n-1] > 0 となります。
# 計算間違いと、後半の論理には自信がありませんので識者の方のツッコミをお願いします。
引用返信
/
返信
[メール受信/OFF]
削除キー/
編集
削除
このトピックをツリーで一括表示
トピック内ページ移動 / <<
0
>>
このトピックに書きこむ
入力内容にタグは利用できません。
数式の記述方法
TeX入力ができます。
\[
TeX形式数式
\]
あるいは,
$
TeX形式数式
$
で数式を記述します。
TeX形式数式には半角英数字のみです。詳しくは、
ここ
を見てください。
Titleは質問の内容がわかりやすいように書いてください。
他人を中傷する記事は管理者の判断で予告無く削除されます。
半角カナは使用しないでください。文字化けの原因になります。
名前、Title、コメントは必須記入項目です。記入漏れはエラーになります。
入力内容の一部は、次回投稿時の手間を省くためブラウザに記録されます。
削除キーを覚えておくと、自分の記事の編集・削除ができます。
URLは自動的にリンクされます。
引用返信するときは不要な引用部分を削除してください。
記事中に No*** のように書くとその記事にリンクされます(No は半角英字/*** は半角数字)。
使用例)
No123 → 記事No123の記事リンクになります(指定表示)。
No123,130,134 → 記事No123/130/134 の記事リンクになります(複数表示)。
No123-130 → 記事No123〜130 の記事リンクになります(連続表示)。
Name
/
E-Mail
/
└> 関連するレス記事をメールで受信しますか?
NO
YES
/ アドレス
非公開
公開
Title
/
URL
/
Comment/ 通常モード->
図表モード->
(適当に改行して下さい/半角10000文字以内)
File
/
アップ可能拡張子=> /
.gif
/
.jpg
/
.jpeg
/
.png
/.txt/.lzh/.zip/.mid/.svg
1) 太字の拡張子は画像として認識されます。
2) 画像は初期状態で縮小サイズ250×250ピクセル以下で表示されます。
3) 同名ファイルがある、またはファイル名が不適切な場合、
ファイル名が自動変更されます。
4) アップ可能ファイルサイズは1回
200KB
(1KB=1024Bytes)までです。
5) ファイルアップ時はプレビューは利用できません。
6) スレッド内の合計ファイルサイズ:[0/500KB]
残り:[500KB]
Icon
/
ぺそぎん(常)
ぺそぎん(喜)
ぺそぎん(礼)
ぺそぎん(跳)
ぺそぎん(焦)
ぺそぎん(励)
マサト
ミツコ
サトシ
サクラ
ダン
エリカ
ホイールロボ
くるりロボ
ぱんだ
ふとめネコ
ねずみ
こあら
疑問ねこ
ランダム
管理者用
(画像を選択/
サンプル一覧
)
削除キー
/
(半角8文字以内)
解決済み!
BOX/
解決したらチェックしてください!
プレビュー/
Mode/
通常管理
表示許可
Pass/
HOME
HELP
新規作成
新着記事
ツリー表示
スレッド表示
トピック表示
発言ランク
ファイル一覧
検索
過去ログ
-
Child Tree
-
Edit By
数学ナビゲーター