数学ナビゲーター掲示板

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

No50396 の記事


■50396 / )  Re[8]: フェルマーの最終定理の簡単な証明9
□投稿者/ 日高 一般人(1回)-(2020/07/09(Thu) 09:58:20)
    【定理】pが奇素数のとき、x^p+y^p=z^pは、0以外の有理数の解を持たない。
    【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
    (1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
    (2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
    (3)はrが無理数なので、yが有理数のとき、xは無理数となる。xが有理数のとき、yは無理数となる。
    (2)はr^(p-1){(y/r)^p-1}=ap{x^(p-1)+…+r^(p-2)x}(1/a)…(4)となる。
    (4)はr^(p-1)=apのとき、x^p+y^p=(x+(ap)^{1/(p-1)})^p…(5)となる。
    (5)のrが有理数のとき、(5)の解は(3)の解のa^{1/(p-1)}倍となる。
    ∴pが奇素数のとき、x^p+y^p=z^pは、0以外の有理数の解を持たない
返信/引用返信 [メール受信/OFF] 削除キー/


Mode/  Pass/

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

- Child Tree -
Edit By 数学ナビゲーター