数学ナビゲーター掲示板

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

■50499 / 親記事)  複素関数の部分分数分解
  
□投稿者/ Megumi 一般人(3回)-(2020/09/20(Sun) 13:09:52)
     実感数では
      1/(1-t^2)^2 = a/(1-t) + b/(1-t)^2 + c/(1+t) + d/(1+t)^2.

      1 = a(1-t)(1+t)^2 + b(1+t)^2 + c(1-t)^2(1+t) + d(1-t)^2
       = a(1+t-t^2-t^3) + b(1+2t+t^2) + c(1-t-t^2+t^3) + d(1-2t+t^2)
       = a + b + c + d + (a+2b-c-2d)t + (-a+b-c+d)t^2 + (-a+c)t^3.
      a + b + c + d = 1.
      a + 2b - c - 2d = 0.
      - a + b - c + d = 0.
      -a + c = 0.
      ∴a = b = c = d = 1/4.

     これにならって
      1/(z^2+1) = 1/(z+√2i)(z-√2i) = α/(z+√2i) + β(z-√2i)
      1 = α(z-√2i) + β(z+√2i)
       = αz + βz - α√2i + β√2i
       = z(α+β) - √2i(α-β)
      α+β = 0
      α-β = -1/√2i
      2α = 1/√2i.  α = 1/2√2i.  β = -1/2√2i
      ∴α/(z+√2i) + β(z-√2i) = 1/2√2i( 1/(z+√2i) - 1/(z-√2i) )
    とやったのですが、これでいいのでしょうか?

引用返信/返信 [メール受信/OFF] 削除キー/
■50501 / ResNo.1)  Re[1]: 複素関数の部分分数分解
□投稿者/ らすかる 一般人(15回)-(2020/09/20(Sun) 20:06:43)
    (z+(√2)i)(z-(√2)i)=z^2+2≠z^2+1ですから先頭行が正しくありません。
引用返信/返信 [メール受信/OFF] 削除キー/
■50502 / ResNo.2)  Re[2]: 複素関数の部分分数分解
□投稿者/ Megumi 一般人(4回)-(2020/09/20(Sun) 22:18:15)
    回答ありがとうございます。
    1/(z^2+2)の分解でした。お騒がせしました。
引用返信/返信 [メール受信/OFF] 削除キー/
■50503 / ResNo.3)  Re[3]: 複素関数の部分分数分解
□投稿者/ らすかる 一般人(16回)-(2020/09/21(Mon) 00:10:58)
    それでしたらα-β=-1/{(√2)i}までは正しいですが、
    次の2α=1/{(√2)i}が間違っています。
    正しくは2α=-1/{(√2)i}です。
    符号が逆ですので、最後の式を計算すると-1/(z^2+1)になります。

引用返信/返信 [メール受信/OFF] 削除キー/
■50504 / ResNo.4)  Re[4]: 複素関数の部分分数分解
□投稿者/ Megumi 一般人(5回)-(2020/09/21(Mon) 05:21:31)
    重ね重ねありがとうございます。その通りでした。
引用返信/返信 [メール受信/OFF] 削除キー/



スレッド内ページ移動 / << 0 >>

このスレッドに書きこむ

Mode/  Pass/

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

- Child Tree -
Edit By 数学ナビゲーター