数学ナビゲーター掲示板

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

■50874 / 親記事)  Lambert W関数を用いた数式
  
□投稿者/ ちえ 一般人(1回)-(2021/06/28(Mon) 17:22:48)
    数式について質問です。
    D=I-(I-S)*exp(-A/(I-S)*t)
    をI=の式にしたいのですが、解けない関数であることが分かりました。
    そこで、Lambert W関数の関係を用いて
    I=W(0,・・)
    のような表現はできないでしょうか?
    どなたかご教授願います。
引用返信/返信 [メール受信/OFF] 削除キー/
■50875 / ResNo.1)  Re[1]: Lambert W関数を用いた数式
□投稿者/ らすかる 付き人(62回)-(2021/06/28(Mon) 17:44:58)
    D=I-(I-S)*exp(-A/(I-S)*t)
    (I-S)*exp(-A/(I-S)*t)=I-D
    exp(-A/(I-S)*t)=(I-D)/(I-S)
    exp(-A/(I-S)*t)=(I-S+S-D)/(I-S)
    exp(-A/(I-S)*t)=(S-D)/(I-S)+1
    {(S-D)/(I-S)+1}exp(A/(I-S)*t)=1
    {At/(S-D)}{(S-D)/(I-S)+1}exp(A/(I-S)*t)=At/(S-D)
    {At/(I-S)+At/(S-D)}exp(At/(I-S))=At/(S-D)
    {At/(I-S)+At/(S-D)}exp(At/(I-S)+At/(S-D))={At/(S-D)}exp(At/(S-D))
    At/(I-S)+At/(S-D)=W({At/(S-D)}exp(At/(S-D)))
    At/(I-S)=W({At/(S-D)}exp(At/(S-D)))-At/(S-D)
    (I-S)/At=1/{W({At/(S-D)}exp(At/(S-D)))-At/(S-D)}
    I-S=At/{W({At/(S-D)}exp(At/(S-D)))-At/(S-D)}
    ∴I=At/{W({At/(S-D)}exp(At/(S-D)))-At/(S-D)}+S
    となります。

引用返信/返信 [メール受信/OFF] 削除キー/
■50876 / ResNo.2)  Re[2]: Lambert W関数を用いた数式
□投稿者/ ちえ 一般人(2回)-(2021/06/28(Mon) 19:08:12)
    ありがとうございます。
    大変参考になりました
引用返信/返信 [メール受信/OFF] 削除キー/
■51024 / ResNo.3)  Re[2]: Lambert W関数を用いた数式
□投稿者/ ちえ 一般人(3回)-(2021/07/27(Tue) 15:30:43)
    MathematicaやWolframAlphaなどの数値解析で同じ解が求まるか試しましたが出来ませんでした。
    特殊関数を使用して数値解析したいのですが、Excel VBAなどで参考になるソースなど無いでしょうか?
引用返信/返信 [メール受信/OFF] 削除キー/
■51027 / ResNo.4)  Re[3]: Lambert W関数を用いた数式
□投稿者/ らすかる 付き人(66回)-(2021/07/27(Tue) 20:13:14)
    少なくともWolframAlphaではできると思いますが。
    例えばD=I-(I-S)*exp(-A/(I-S)*t)の式においてI=5,S=3,A=1,t=3とおくと
    D=4.5537396797…という値になりますね。
    I以外の値をI=At/{W({At/(S-D)}exp(At/(S-D)))-At/(S-D)}+Sの右辺に入れると
    WolframAlphaで
    1*3/(lambertw((1*3/(3-4.5537396797))*exp(1*3/(3-4.5537396797)))-1*3/(3-4.5537396797))+3
    と入力することで5.000000000…という値が得られますね。

引用返信/返信 [メール受信/OFF] 削除キー/



スレッド内ページ移動 / << 0 >>

このスレッドに書きこむ

Mode/  Pass/

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

- Child Tree -
Edit By 数学ナビゲーター