数学ナビゲーター掲示板
HOME
HELP
新規作成
新着記事
ツリー表示
スレッド表示
トピック表示
発言ランク
ファイル一覧
検索
過去ログ
[ スレッド内全6レス(親記事-6 表示) ] <<
0
>>
■51096
/ 親記事)
部分分数分解
▼
■
□投稿者/ 7610
一般人(1回)-(2021/08/21(Sat) 22:18:09)
1/x^2(x+1) = a/x^2 + b/(x+1) + c/x ・・・・・・ (1)
両辺を x^2(x+1) で払うと
1 = a(x+1) + bx^2 + cx(x+1)
x = 0 のとき a = 1、x = -1 のとき b = 1 なので
1 = (x+1) + x^2 + cx(x+1)
x = 1 のとき 1 = 2 + 1 + 2c なので c = -1.
検算してみると確かに
1/x^2(x+1) = 1/x^2 + 1/x+1 - 1/x
となるのですが、これを導くのになぜ(1)のような形を前提としておくのでしょうか?
a/x^2、b/(x+1) に加え c/x をおく理由がわかりにくいのです。というのも(1)の左辺の分母は分母は x^2 と (x+1) かけたものなのですから
1/x^2(x+1) = a/x^2 + b/(x+1)
でもよさそうなものですが、(1)と同じように計算しても
1 = a(x+1) + bx^2 ・・・・・・ (2)
x = -1 → b = 1.
x = 0 → a = 1.
1/x^2 + 1/(x+1) = (x+1+x^2)/x^2(x+1)
となり全然ダメなことは確認できます。しかしなぜこれではダメなのかと問われるとうまく説明できません。
たとえば(1)を少し変形した
1/(x-1)^2(x+1) = a/(x-1)^2 + b/(x+1) + c/(x-1)
を(1)と同様に計算してみると
a = 1/2, b = 1/4, c = -1/4
と正しく部分分数分解されます。他にも三次式の分母の部分分数分解をいくつか試みた結果から推察するとどうやら x の三次式の分母が一次式で因数分解できるときは
1/(x+α)(x+β)(x+γ) = a/(x+α) + b/(x+β) + c/(x+γ)
とおける。
三次式の分母 = 0 が重解を持つときは
1/(x+α)^2(x+β) = a/(x+α)^2 + b/(x+α) + c/(x+β)
とおける。
ような気がするですが、そうしていい理由がいまいちしっくりきません。
http:/
/mathtrain.jp/bubun
をみたら(1)のような分解は証明なしに利用していいとあります。きちんと証明するには高校レベル以上の数学が必要なのでしょうか?
とりあえずは(2)がダメな理由がはっきりわかるだけでもありがたいのです。
引用返信
/
返信
[メール受信/OFF]
削除キー/
編集
削除
■51097
/ ResNo.1)
Re[1]: 部分分数分解
▲
▼
■
□投稿者/ らすかる
付き人(67回)-(2021/08/22(Sun) 00:23:36)
一般論として、1/{P(x)Q(x)}を○/P(x)+□/Q(x)の形に分解する場合、
○はP(x)より次数が1小さい多項式、□はQ(x)より次数が1小さい多項式とする必要があります。
例えば1/{(x^2+1)(x^3+2)}であれば
1/{(x^2+1)(x^3+2)}=(ax+b)/(x^2+1)+(cx^2+dx+e)/(x^3+2)
のようにおきます。
よって、1/(x^2(x+1))をもし○/x^2+□/(x+1)のように分解するならば
(ax+b)/x^2+c/(x+1)のようにおく必要があります。
a/x^2+c/xの形は、
(ax+b)/x^2=ax/x^2+b/x^2=a/x+b/x^2
のように分解したものです。
引用返信
/
返信
[メール受信/OFF]
削除キー/
編集
削除
■51098
/ ResNo.2)
Re[2]: 部分分数分解
▲
▼
■
□投稿者/ 7610
一般人(2回)-(2021/08/22(Sun) 00:39:20)
ご回答ありがとうございました。
礼儀もわきまえない質問にも関わらずご丁寧にすみません。
これに懲りてくだらない質問は控えるように致します。申し訳ありませんでした。
引用返信
/
返信
[メール受信/OFF]
削除キー/
編集
削除
■51099
/ ResNo.3)
Re[2]: 部分分数分解
▲
▼
■
□投稿者/ 7610
一般人(3回)-(2021/08/22(Sun) 04:54:56)
らすかる様
回答まことにありがとうございました。
すぐ上のやつはなりすましです。ここ、いい掲示板だったのにすっかり荒れてるなあ。
引用返信
/
返信
[メール受信/OFF]
削除キー/
編集
削除
■51102
/ ResNo.4)
Re[3]: 部分分数分解
▲
▼
■
□投稿者/ らすかる
付き人(68回)-(2021/08/22(Sun) 14:38:59)
どちらが本物か分かりませんが、とりあえず解決ですね。
引用返信
/
返信
[メール受信/OFF]
削除キー/
編集
削除
■51103
/ ResNo.5)
Re[3]: 部分分数分解
▲
▼
■
□投稿者/ らすかる
付き人(69回)-(2021/08/22(Sun) 15:05:05)
すぐ上のやつはなりすましです。
いちいちなりすましかどうかまで考えなければいけないのは面倒ですね。
引用返信
/
返信
[メール受信/OFF]
削除キー/
編集
削除
■51104
/ ResNo.6)
Re[4]: 部分分数分解
▲
▼
■
□投稿者/ らすかる
付き人(70回)-(2021/08/23(Mon) 03:01:10)
すぐ上のやつはなりすましかどうか疑われているなりすましで、
そのすぐ上の者は本物です。真贋を見極めるのも掲示板ならではとはいえ、やはり面倒ですね。。
引用返信
/
返信
[メール受信/OFF]
削除キー/
編集
削除
このスレッドをツリーで一括表示
スレッド内ページ移動 / <<
0
>>
このスレッドに書きこむ
入力内容にタグは利用できません。
数式の記述方法
TeX入力ができます。
\[
TeX形式数式
\]
あるいは,
$
TeX形式数式
$
で数式を記述します。
TeX形式数式には半角英数字のみです。詳しくは、
ここ
を見てください。
Titleは質問の内容がわかりやすいように書いてください。
他人を中傷する記事は管理者の判断で予告無く削除されます。
半角カナは使用しないでください。文字化けの原因になります。
名前、Title、コメントは必須記入項目です。記入漏れはエラーになります。
入力内容の一部は、次回投稿時の手間を省くためブラウザに記録されます。
削除キーを覚えておくと、自分の記事の編集・削除ができます。
URLは自動的にリンクされます。
引用返信するときは不要な引用部分を削除してください。
記事中に No*** のように書くとその記事にリンクされます(No は半角英字/*** は半角数字)。
使用例)
No123 → 記事No123の記事リンクになります(指定表示)。
No123,130,134 → 記事No123/130/134 の記事リンクになります(複数表示)。
No123-130 → 記事No123〜130 の記事リンクになります(連続表示)。
Name
/
E-Mail
/
└> 関連するレス記事をメールで受信しますか?
NO
YES
/ アドレス
非公開
公開
Title
/
URL
/
Comment/ 通常モード->
図表モード->
(適当に改行して下さい/半角10000文字以内)
File
/
アップ可能拡張子=> /
.gif
/
.jpg
/
.jpeg
/
.png
/.txt/.lzh/.zip/.mid/.svg
1) 太字の拡張子は画像として認識されます。
2) 画像は初期状態で縮小サイズ250×250ピクセル以下で表示されます。
3) 同名ファイルがある、またはファイル名が不適切な場合、
ファイル名が自動変更されます。
4) アップ可能ファイルサイズは1回
200KB
(1KB=1024Bytes)までです。
5) ファイルアップ時はプレビューは利用できません。
6) スレッド内の合計ファイルサイズ:[0/500KB]
残り:[500KB]
Icon
/
ぺそぎん(常)
ぺそぎん(喜)
ぺそぎん(礼)
ぺそぎん(跳)
ぺそぎん(焦)
ぺそぎん(励)
マサト
ミツコ
サトシ
サクラ
ダン
エリカ
ホイールロボ
くるりロボ
ぱんだ
ふとめネコ
ねずみ
こあら
疑問ねこ
ランダム
管理者用
(画像を選択/
サンプル一覧
)
削除キー
/
(半角8文字以内)
解決済み!
BOX/
解決したらチェックしてください!
プレビュー/
Mode/
通常管理
表示許可
Pass/
HOME
HELP
新規作成
新着記事
ツリー表示
スレッド表示
トピック表示
発言ランク
ファイル一覧
検索
過去ログ
-
Child Tree
-
Edit By
数学ナビゲーター