数学ナビゲーター掲示板

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

■52299 / 親記事)  係数
  
□投稿者/ 係数 一般人(1回)-(2023/09/06(Wed) 19:33:15)
    Σ[k=0,∞](5x-3x^2)^kを展開して整理してa[0]+a[1]x+a[2]x^2+…+a[n]x^n+…
    と表した時の係数a[n]はどのような式で表されるのか教えて下さい。
引用返信/返信 [メール受信/OFF] 削除キー/
■52300 / ResNo.1)  Re[1]: 係数
□投稿者/ WIZ 一般人(1回)-(2023/09/07(Thu) 00:25:22)
    2023/09/08(Fri) 00:22:54 編集(投稿者)

    べき乗演算子^は四則演算より優先度が高いものとします。
    また、xの値に関わらず(5x-3x^2)^0 = 1とします。

    Σ[k=0,∞]{(5x-3x^2)^k} = 1/{1-(5x-3x^2)}ですから、
    f(x) = 1/(3x^2-5x+1)と置けば、a[0], a[1], ・・・はf(x)のマクローリン展開の係数となり、
    a[0] = f(0)/(0!), a[1] = f'(0)/(1!), a[2] = f''(0)/(2!), ・・・となります。

    nを非負整数として、f(x)のn階導関数をf[n](x)と表すことにします。
    f[0](x)はf(x)自身です。すると、a[n] = f[n](0)/(n!)となりますね。

    # おそらく質問者さんは、a[n]をもっと具体的なnの式で表すことを期待されていると思うので、
    # 上記の回答では期待外れでしょうけど。
引用返信/返信 [メール受信/OFF] 削除キー/
■52304 / ResNo.2)  Re[2]: 係数
□投稿者/ 係数 一般人(2回)-(2023/09/08(Fri) 15:25:38)
    ありがとうございます。ちなみにですが、a[n]>0になることって簡単に分かったりしますか?
引用返信/返信 [メール受信/OFF] 削除キー/
■52308 / ResNo.3)  Re[1]: 係数
□投稿者/ WIZ 一般人(2回)-(2023/09/11(Mon) 00:18:25)
    3x^2-5x+1 = 0とおくと、x = (5±√13)/6ですので、
    u = (5+√13)/6, v = (5-√13)/6とすれば、3x^2-5x+1 = 3(x-u)(x-v)です。

    よって、
    1/(3x^2-5x+1) = 1/{3(x-u)(x-v)}
    = (1/(3(u-v))){1/(x-u)-1/(x-v)}
    = (1/√13){(1/v)/(1-x/v)-(1/u)/(1-x/u)}
    = (1/√13){3u/(1-3ux)-3v/(1-3vx)}
    = (3/√13){uΣ[k=0,∞]((3ux)^k)-vΣ[k=0,∞]((3vx)^k)}
    = (3/√13)Σ[k=0,∞]{(3^k)((u^(k+1))-(v^(k+1)))(x^k)}

    但し、xの値に関わらずx^0 = 1とします。
    以上から、自然数nに対してa[n] = {((3u)^(n+1))-((3v)^(n+1))}/√13となります。
    u > 1 > v > 0なので、(u^(n+1))-(v^(n+1)) > 0ですので、a[n] > 0と言えそうです。

    # 計算間違いしている可能性もあるので、質問者さんの方で良く検算してみてください。
引用返信/返信 [メール受信/OFF] 削除キー/
■52309 / ResNo.4)  私について一つ: 数学に関しては私を当てにしないでください!
□投稿者/ Lambda Winner 一般人(1回)-(2023/09/11(Mon) 15:09:57)
http://xolotto.com/ja/
    私について一つ: 数学に関しては私を当てにしないでください! ハハハ、エッセイをたくさん書くように言ってもいいけど、数字を見ると頭が自動的に痛くなるみたい。 とにかく高校の時、係数を勉強した記憶があって すごく大変でした。
引用返信/返信 [メール受信/OFF] 削除キー/



スレッド内ページ移動 / << 0 >>

このスレッドに書きこむ

Mode/  Pass/

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

- Child Tree -
Edit By 数学ナビゲーター