数学ナビゲーター掲示板

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

■52818 / 親記事)  三角形の面積の大小
  
□投稿者/ 掛け流し 一般人(1回)-(2025/04/14(Mon) 23:58:51)
    43年前の学習院大学理学部の入試問題です。
    「△ABC,△A'B'C'を2つの鋭角三角形とする。このとき,

    AB<A’B', BC<B'C', CA<C'A' ならば △ABC<△A'B'C'

    であることを証明せよ。」

    の証明の過程として、c<c',a<a',b<b'とするとき,
        
           0<b^2+c^2-a^2<2bc かつ 0<b'^2+c'^2-a'^2<2b'c'

    △ABC=1/4・sqr{4b^2c^2-(b^2+c^2-a^2)^2

    △A'B'C'=1/4・sqr{4b'^2c'^2-(b'^2+c'^2-a'^2)^2}

    とここまで求めたのですが,これから,△ABC<△A'B'C' であることをどう導いたらいいのか分かりません。ご教授お願いします。


引用返信/返信 [メール受信/OFF] 削除キー/
■52820 / ResNo.1)  Re[1]: 三角形の面積の大小
□投稿者/ らすかる 一般人(15回)-(2025/04/15(Tue) 01:31:10)
    その式からは導けません。
    例えば a=b=c=9, a'=b'=10,c'=19 は
    a<a', b<b', c<c',
    0<b^2+c^2-a^2<2bc かつ 0<b'^2+c'^2-a'^2<2b'c'
    を満たしますが、△ABC>△A'B'C'です。

引用返信/返信 [メール受信/OFF] 削除キー/
■52827 / ResNo.2)  Re[2]: 三角形の面積の大小
□投稿者/ 掛け流し 一般人(2回)-(2025/04/25(Fri) 19:17:11)
    らすかる様、ご指摘有り難うございます。
             
    2つの三角形がとも鋭角三角形であることから、0<b^2+c^2-a^2<2bc, 0<c^2+a^2-b^2<2ca, 0<c^2+b^2-c^2<2ac および,a',b',c'についても上と同様の等式 計6つの等式が成立し、これらと a<a',b<b', c<c'の条件から,2つの三角形の面積の大小を示したいのですが、出来ず悩んでいます。
    何か, アドバイス頂ければ幸いです。
引用返信/返信 [メール受信/OFF] 削除キー/
■52828 / ResNo.3)  Re[3]: 三角形の面積の大小
□投稿者/ 掛け流し 一般人(3回)-(2025/04/25(Fri) 19:19:50)
    文中, 不等式の間違いです。お許し下さい。
引用返信/返信 [メール受信/OFF] 削除キー/



スレッド内ページ移動 / << 0 >>

このスレッドに書きこむ

Mode/  Pass/

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

- Child Tree -
Edit By 数学ナビゲーター