 | べき乗演算子^は四則演算子より優先度が高いものとします。
cx = ca/b-bc/a ay = ab/c-ca/b bz = bc/a-ab/c ⇒ cx+ay+bz = 0・・・・・(1)
(1/c)x = a/(bc)-b/(ca) (1/a)y = b/(ca)-a/(ab) (1/b)z = c/(ab)-a/(bc) ⇒ (1/c)x+(1/a)y+(1/b)z = 0・・・・・(2)
p = a/b+b/a, q = b/c+c/b, r = c/a+a/cとおくと、 p+x = 2a/b, q+y = 2b/c, r+z = 2c/a ⇒ (p+x)(q+y)(r+z) = (2a/b)(2b/c)(2c/a) ⇒ pqr+pyz+qzx+rxy+pqz+qrx+rpy+xyz = 8・・・・・(3)
pqr = (a/b+b/a)(b/c+c/b)(c/a+a/c) = (a/b)(b/c)(c/a)+(a/b)(b/c)(a/c)+(a/b)(c/b)(c/a)+(a/b)(c/b)(a/c) +(b/a)(b/c)(c/a)+(b/a)(b/c)(a/c)+(b/a)(c/b)(c/a)+(b/a)(c/b)(a/c) = 1+(a/c)^2+(c/b)^2+(a/b)^2+(b/a)^2+(b/c)^2+(c/a)^2+1 = (a/b-b/a)^2+(b/c-c/b)^2+(c/a-a/c)^2+8 = x^2+y^2+z^2+8・・・・・(4)
(1)(2)より、 0 = (cx+ay+bz)(x/c+y/a+z/b) = x^2+y^2+z^2+(c/a+a/c)xy+(a/b+b/a)yz+(b/c+c/b)zx = x^2+y^2+z^2+rxy+pyz+qzx・・・・・(5)
(3)(4)(5)より、 (x^2+y^2+z^2+8)-(x^2+y^2+z^2)+pqz+qrx+rpy+xyz = 8 ⇒ pqz+qrx+rpy = -xyz・・・・・(6)
(5)(6)より、 (x^2+y^2+z^2)^2 = (rxy+pyz+qzx)^2 ⇒ x^4+y^4+z^4+2{(xy)^2+(yz)^2+(zx)^2} = (rxy)^2+(pyz)^2+(qzx)^2+2xyz(rpy+pqz+qrx) ⇒ x^4+y^4+z^4 = (r^2-2)(xy)^2+(p^2-2)(yz)^2+(q^2-2)(zx)^2+2xyz(-xyz)
ここで、 p^2-2 = (a/b+b/a)^2-2 = (a/b)^2+(b/a)^2 = (a/b-b/a)^2+2 = x^2+2 同様に、q^2-2 = y^2+2, r^2-2 = z^2+2ですので、 ⇒ x^4+y^4+z^4 = (z^2+2)(xy)^2+(x^2+2)(yz)^2+(y^2+2)(zx)^2-2(xyz)^2 ⇒ x^4+y^4+z^4-(xyz)^2 = 2{(xy)^2+(yz)^2+(zx)^2} ⇒ {x^4+y^4+z^4-(xyz)^2}/{(xy)^2+(yz)^2+(zx)^2} = 2
# もっと上手い計算方法があるのかもしれません。
|