数学ナビゲーター掲示板

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

■50804 / 1階層)  漸化式
□投稿者/ WIZ 一般人(1回)-(2021/05/27(Thu) 23:29:06)
    2021/05/27(Thu) 23:39:38 編集(投稿者)

    a[n] = (n-1)(a[n-1]+a[n-2])
    ⇒ a[n]-n*a[n-1] = (n-1)a[n-2]-a[n-1]

    よって、n ≧ 3 のとき、b[n] = a[n]-n*a[n-1] おけば
    b[n] = -b[n-1]
    となる。

    a[3] = (3-1)(a[2]+a[1]) = 2(1+0) = 2
    b[3] = a[3]-3*a[2] = 2-3*1 = -1
    なので、
    b[n] = a[n]-n*a[n-1] = (-1)^n

    尚、
    a[2]-2*a[1] = 1-2*0 = 1 = (-1)^2
    なので、
    a[n]-n*a[n-1] = (-1)^n
    は n = 2 でも成立する。

    a[n] = (n-1)(a[n-1]+a[n-2])
    ⇒ a[n]+a[n-1]+a[n-2] ≡ 0 (mod n)
    ⇒ a[n]+(a[n-1]-(n-1)a[n-2])+n*a[n-2] ≡ 0 (mod n)
    ⇒ a[n]+(-1)^(n-1) ≡ 0 (mod n)
    ⇒ a[n] ≡ -(-1)^(n-1) ≡ (-1)^n (mod n)

    よって、n ≧ 2 において、n が素数であるかないかに関わらず、
    n が偶数なら、a[n] を n で割った余りは 1
    n が奇数なら、a[n] を n で割った余りは n-1
    となります。
記事引用 [メール受信/OFF] 削除キー/

前の記事(元になった記事) 次の記事(この記事の返信)
←漸化式 /子 返信無し
 
上記関連ツリー

Nomal 漸化式 / 子 (21/05/22(Sat) 19:45) #50801
Nomal 漸化式 / WIZ (21/05/27(Thu) 23:29) #50804 ←Now

All 上記ツリーを一括表示 / 上記ツリーをトピック表示
 
上記の記事へ返信

Mode/  Pass/

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

- Child Tree -
Edit By 数学ナビゲーター