数学ナビゲーター掲示板

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

■ 過去ログ検索の勧め⇒ここを読んでみてください
google検索

 
この掲示板の過去ログをgoogleで検索します。
検索条件:
現在のログを検索過去のログを検索
■ 2006/2/20より、累計:、本日:、昨日:
数式の記述方法
TeX入力ができます。 \[ TeX形式数式 \] あるいは,$ TeX形式数式 $ で数式を記述します。
 TeX形式数式には半角英数字のみです。詳しくは、ここを見てください。文字化けが発生したときはここを見てください。
■ 質問をする方は、回答者に失礼のないようにお願いします。
携帯電話でこの掲示板を見れるようにしました。⇒ここを見てください。
■ 24時間以内に作成されたスレッドは New で表示されます。
■ 24時間以内に更新されたスレッドは UpDate で表示されます。

記事リスト ( )内の数字はレス数
Nomalフーリエ級数展開・フーリエ変換(2) | Nomal線形代数(1) | Nomal無限和(7) | Nomal進数の表現(4) | Nomal高校数学 整数問題(4) | Nomal整数の表現の同値証明(4) | Nomal多項式の既約性(0) | Nomal円錐台の断面積(9) | Nomal相関係数と共分散(1) | Nomallogの計算(3) | Nomaltan(z) を z = π/2 中心にローラン展開する(2) | Nomal複素数平面(1) | Nomal複素数 証明(難)(0) | Nomal確率の問題が分かりません 助けてください(1) | Nomal極限(3) | Nomalメビウス変換(0) | Nomal複素数 写像 (0) | Nomal複素数平面(0) | Nomal解答を教えてください(1) | Nomal解答を教えてください(0) | Nomal解答を教えてください(0) | Nomal解答を教えてください(0) | Nomal解答を教えてください(0) | Nomal確率の不等式(1) | Nomal無理関数の積分(大学)(2) | Nomal複素数(1) | Nomal確率(2) | Nomal囲まれた面積(2) | Nomal複素数(2) | Nomal微分可能な点を求める問題(1) | Nomal初等数学によるフェルマーの最終定理の証明(5) | Nomal極限の問題 2改(1) | Nomal極限の問題2(1) | Nomal極限の問題(1) | Nomal多項式の整除(1) | Nomal三角形(1) | Nomal三角数の和(0) | Nomalコラッツ予想(0) | Nomal平方数(1) | Nomal整数問題(1) | Nomal低レベルな問題ですいません(2) | Nomal中学数学によるフェルマーの最終定理の証明(1) | Nomalガウス整数の平方和(8) | Nomal環でしょうか(2) | Nomal三角関数の式(0) | Nomal大学数学 位相数学(1) | Nomal確率(1) | Nomal1/{z^2(z-1)^2} z=0でローラン展開(1) | Nomal速度(2) | Nomali^iについて(2) | Nomal(x+1)^n-x^n(1) | Nomal定積分(1) | Nomal複素数平面(6) | Nomal円に内接する四角形(2) | Nomal不等式(4) | Nomal代数学(1) | Nomal極限(0) | Nomal大学数学(0) | Nomal三角形(2) | Nomal多項式(1) | Nomal有限体(0) | Nomal場合の数(2) | Nomal同値関係が分かりません(0) | Nomal素因数(1) | Nomal質問(2) | Nomal周期関数(1) | Nomal不等式(2) | Nomal確立 基礎問題(2) | NomalCELINE コピー(0) | Nomal整数問題(2) | Nomal二項係数2nCn(1) | Nomal係数(4) | Nomalこれだけで求められるの?(3) | Nomal不等式(2) | Nomal期待値(2) | Nomal整数問題(1) | Nomal二次方程式の定数を求める(3) | Nomal正十二面体(2) | Nomal複素数と図形(1) | Nomal整数の例(4) | Nomal大学の積分の問題です(0) | Nomal位相数学(0) | Nomalコラッツ予想について(0) | Nomalコラッツ予想について(0) | Nomal線形代数(0) | Nomalkkk(0) | Nomalお金がかからない(0) | Nomal関数方程式(2) | Nomal大学数学難しすぎて分かりません。お願いします(0) | Nomal大学数学難しすぎて分かりません。。(0) | Nomalコラッツ予想(0) | Nomalべズーの定理(0) | Nomal数学はゲーム(3) | Nomal解析学(0) | Nomal位相数学(1) | Nomal大学数学 位相数学(2) | Nomal数検準2級は難しい(0) | Nomal条件付き最大値問題について(0) | Nomal数列(2) | Nomal三角関数(0) |



■記事リスト / ▼下のスレッド
■50893 / 親記事)  ベクトルの大きさ
□投稿者/ 掛け流し掛け流し 一般人(1回)-(2021/07/07(Wed) 23:39:36)
    平面上のベクトル a,bが

      |a+2b|=1、|2a−b|=1

    を満たしているとき、|a−2b|の取り得る値の範囲を求めよ。

    (答えは、1/5<=|a−2b|<=7/5)

    の解法を教えてください。

    よろしくお願いします。
引用返信/返信 [メール受信/OFF]

▽[全レス3件(ResNo.1-3 表示)]
■50895 / ResNo.1)  Re[1]: ベクトルの大きさ
□投稿者/ WIZ 一般人(12回)-(2021/07/08(Thu) 13:44:08)
    2021/07/08(Thu) 15:19:21 編集(投稿者)

    xy座標でべクトルを原点 (0, 0) を始点とた終点の座標 (x, y) で表すことにすると、
    |(x, y)| = √(x^2+y^2) です。

    p, q, r, s を実数として、a = (p, q), b = (r, s) とします。

    |a+2b| = |(p, q)+2(r, s)| = |(p+2r, q+2s)| = 1
    ⇒ (p+2r)^2+(q+2s)^2 = 1^2 ・・・・・(0)

    上記より、ある実数 u が存在して
    p+2r = cos(u) ・・・・・(1)
    q+2s = sin(u) ・・・・・(2)
    とおけます。

    |2a-b| = |2(p, q)-(r, s)| = |(2p-r, 2q-s)| = 1
    ⇒ (2p-r)^2+(2q-s)^2 = 1^2

    上記より、ある実数 v が存在して
    2p-r = cos(v) ・・・・・(3)
    2q-s = sin(v) ・・・・・(4)
    とおけます。

    (1)(3)より
    (p+2r)+2(2p-r) = cos(u)+2cos(v)
    ⇒ p = (cos(u)+2cos(v))/5 ・・・・・(5)
    ⇒ r = 2(cos(u)+2cos(v))/5-cos(v) = (2cos(u)-cos(v))/5 ・・・・・(6)

    (2)(4)より
    (q+2s)+2(2q-s) = sin(u)+2sin(v)
    ⇒ q = (sin(u)+2sin(v))/5 ・・・・・(7)
    ⇒ s = 2(sin(u)+2sin(v))/5-sin(v) = (2sin(u)-sin(v))/5 ・・・・・(8)

    |a-2b| = |(p, q)-2(r, s)| = |(p-2r, q-2s)|
    ⇒ |a-2b|^2 = (p-2r)^2+(q-2s)^2 = (p+2r)^2+(q+2s)^2-8pr-8qs
    (0)(5)(6)(7)(8)より、
    ⇒ |a-2b|^2 = 1-8((cos(u)+2cos(v))/5)((2cos(u)-cos(v))/5)-8((sin(u)+2sin(v))/5)((2sin(u)-sin(v))/5)
    = 1-(8/25)((cos(u)+2cos(v))(2cos(u)-cos(v))+(sin(u)+2sin(v))(2sin(u)-sin(v)))
    = 1-(8/25)(2cos(u)^2+3cos(u)cos(v)-2cos(v)^2+2sin(u)^2+3sin(u)sin(v)-2sin(v)^2)
    = 1-(8/25)(2(cos(u)^2+sin(u)^2)+3(cos(u)cos(v)+sin(u)sin(v))-2(cos(v)^2+sin(v)^2))
    = 1-(8/25)(2+3cos(u-v)-2)
    = 1-(24/25)cos(u-v)

    -1 ≦ cos(u-v) ≦ 1 ですから
    1-(24/25)(1) ≦ |a-2b|^2 ≦ 1-(24/25)(-1)
    ⇒ 1/25 ≦ |a-2b|^2 ≦ 49/25

    |a-2b| ≧ 0 だから、1/5 ≦ |a-2b| ≦ 7/5 となります。
引用返信/返信 [メール受信/OFF]
■50897 / ResNo.2)  Re[2]: ベクトルの大きさ
□投稿者/ 掛け流し掛け流し 一般人(2回)-(2021/07/09(Fri) 02:30:10)
    分かりずらいよ。もっと短く説明して
引用返信/返信 [メール受信/OFF]
■51789 / ResNo.3)  Re[1]: ベクトルの大きさ
□投稿者/ nacky 一般人(2回)-(2021/12/22(Wed) 10:08:19)
    x=a+2b, y=2a-b とおくと条件より |x|=|y|=1 であり
    a=(x+2y)/5, b=(2x-y)/5
    となります.
    よって
    a-2b=(-3x+4y)/5
    となるので問題は
    「|x|=|y|=1 のとき |(-3x+4y)/5| の範囲を求めよ」
    と言い換えることができます. これを解きましょう.

    まず

    |(-3x+4y)/5|=|-3x+4y|/5

    なので |-3x+4y| の範囲を調べます.
    二つのベクトル u,v の内積を単に積の様に uv と書くことにすると

    |-3x+4y|^2=(-3x+4y)(-3x+4y)
    =9|x|^2-24xy+16|y|^2
    =25-24xy   (|x|=|y|=1 を使った)

    内積の定義より

    xy=|x||y|cosθ=cosθ

    となり

    -1<=xy<=1

    となることがわかるので

    1<=|-3x+4y|^2<=49.

    |-3x+4y| は非負の数なので

    1<=|-3x+4y|<=7

    したがって

    1/5<=|(-3x+4y)/5|<=7/5

    である.

    以上から答えのとおり

    1/5<=|a-2b|<=7/5

    が得られました.

引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-3]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■50906 / 親記事)  jacobson根基の同値な性質について
□投稿者/ もけもけ 一般人(1回)-(2021/07/10(Sat) 00:52:42)
    Rのjacobson根基をJ(R)とする。但しここでのjacobson根基の定義は、Rの全ての極大イデアルの共通部分とする。

    この時、rがJ(R)の元であることと、1+〈r〉の任意の元が単元であることが同値であることを示せ。(〈r〉はrで生成される単項イデアルです)

    この問題が分かりません。どなたか解説して頂けませんか?
引用返信/返信 [メール受信/OFF]

▽[全レス1件(ResNo.1-1 表示)]
■51788 / ResNo.1)  Re[1]: jacobson根基の同値な性質について
□投稿者/ nacky 一般人(1回)-(2021/12/22(Wed) 09:40:56)
    背理法を使いましょう.
    r∈J(R), a∈R とし 1+ar が単元でないと仮定して矛盾を導きます.

    1+ar が単元でないのである極大イデアル M が存在して 1+ar∈M が成り立ちます.
    r は J(R) の元なので r∈M です.
    すると 1=(1+ar)-ar∈M となり M が極大イデアルであることに矛盾します.
    よって 1+ar は単元です.
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-1]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■51776 / 親記事)  数学的帰納法
□投稿者/ 守屋邦彦 一般人(1回)-(2021/11/18(Thu) 22:46:51)
    なぜでしょうか、教えてください。
引用返信/返信 [メール受信/OFF]

▽[全レス2件(ResNo.1-2 表示)]
■51777 / ResNo.1)  Re[1]: 数学的帰納法
□投稿者/ ぶらっくまんでー 一般人(1回)-(2021/11/26(Fri) 20:11:56)
    なにがでしょうか?教えてください
引用返信/返信 [メール受信/OFF]
■51778 / ResNo.2)  Re[2]: 数学的帰納法
□投稿者/ 守屋邦彦 一般人(2回)-(2021/12/01(Wed) 23:09:20)
    なにがでしょうかとは何についてなのでしょうか、教えてください。
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-2]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■50930 / 親記事)  導関数
□投稿者/ たー 一般人(1回)-(2021/07/16(Fri) 18:11:37)
    解き方を教えて頂きたいです。

    関数y= − 2x∧ 7 cosxの導関数は何か。

引用返信/返信 [メール受信/OFF]

▽[全レス4件(ResNo.1-4 表示)]
■50931 / ResNo.1)  Re[1]: 導関数
□投稿者/ たー 一般人(2回)-(2021/07/16(Fri) 22:34:52)
    No50930に返信(たーさんの記事)
    > 解き方を教えて頂きたいです。
    >
    > 関数y= − 2x∧ 7 cosxの導関数は何か。
    >

    やっぱりいいです。解決したんで。
解決済み!
引用返信/返信 [メール受信/OFF]
■50933 / ResNo.2)  Re[2]: 導関数
□投稿者/ たー 一般人(3回)-(2021/07/17(Sat) 00:32:50)
    No50931に返信(たーさんの記事)
    > ■No50930に返信(たーさんの記事)
    >>解き方を教えて頂きたいです。
    >>
    >>関数y= − 2x∧ 7 cosxの導関数は何か。
    >>
    >
    > やっぱりいいです。解決したんで。

    =========================================
            ↑ ↑ ↑

    【未解決】です。まだ解決しておりません。
     
     関数y= − 2x∧ 7 cosxの導関数は何か。

       解き方と解答を教えてください。

    =========================================
引用返信/返信 [メール受信/OFF]
■50934 / ResNo.3)  Re[3]: 導関数
□投稿者/ うんチングボンバーファイヤ 一般人(1回)-(2021/07/17(Sat) 03:49:58)
    No50933に返信(たーさんの記事)
    > ■No50931に返信(たーさんの記事)
    >>■No50930に返信(たーさんの記事)
    > >>解き方を教えて頂きたいです。
    > >>
    > >>関数y= − 2x∧ 7 cosxの導関数は何か。
    > >>
    >>
    >>やっぱりいいです。解決したんで。
    >
    > =========================================
    >         ↑ ↑ ↑
    >
    > 【未解決】です。まだ解決しておりません。
    >  
    >  関数y= − 2x∧ 7 cosxの導関数は何か。
    >
    >    解き方と解答を教えてください。
    >
    > =========================================

    cを変数とすれば− 2x∧ 7 osxが導関数ですね。

引用返信/返信 [メール受信/OFF]
■51774 / ResNo.4)  Re[4]: 導関数
□投稿者/ たー 一般人(1回)-(2021/11/06(Sat) 09:27:17)
    遅くなってすみません。ありがとうございました。
解決済み!
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-4]



■記事リスト / ▲上のスレッド
■51771 / 親記事)  実数、有理数の稠密性
□投稿者/ Soth 一般人(1回)-(2021/11/05(Fri) 18:06:01)
    「αを任意実数、εを任意の正の実数とする。このとき、|α-a|<εを満たす有理数aが少なくとも一つ存在する。」
    という系について、有理数の稠密性に基づいてこれが成立することは理解できるのですが、
    「二つの実数a,bについて、任意の正の実数εに対し |a-b|<ε ならばa=b.」を考えたとき、上の系でα=aが成り立ち、αが無理数の時に有理数aは存在しなくなってしまうのでは、と思ったのですが、この考え方のどこがおかしいですか?
引用返信/返信 [メール受信/OFF]

▽[全レス2件(ResNo.1-2 表示)]
■51772 / ResNo.1)  Re[1]: 実数、有理数の稠密性
□投稿者/ らすかる 付き人(85回)-(2021/11/05(Fri) 20:45:13)
    前者は「任意の値を持つ一つのεに対して有理数が存在する」
    後者は「どんなεに対しても|a-b|<εならばa=b」
    ですからεの取り方が違います。

引用返信/返信 [メール受信/OFF]
■51773 / ResNo.2)  Re[2]: 実数、有理数の稠密性
□投稿者/ Soth 一般人(2回)-(2021/11/06(Sat) 09:26:14)
    わかりました。ありがとう。
解決済み!
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-2]






Mode/  Pass/

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

- Child Tree -
Edit By 数学ナビゲーター