数学ナビゲーター掲示板

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

■ 過去ログ検索の勧め⇒ここを読んでみてください
google検索

 
この掲示板の過去ログをgoogleで検索します。
検索条件:
現在のログを検索過去のログを検索
■ 2006/2/20より、累計:、本日:、昨日:
数式の記述方法
TeX入力ができます。 \[ TeX形式数式 \] あるいは,$ TeX形式数式 $ で数式を記述します。
 TeX形式数式には半角英数字のみです。詳しくは、ここを見てください。文字化けが発生したときはここを見てください。
■ 質問をする方は、回答者に失礼のないようにお願いします。
携帯電話でこの掲示板を見れるようにしました。⇒ここを見てください。
■ 24時間以内に作成されたスレッドは New で表示されます。
■ 24時間以内に更新されたスレッドは UpDate で表示されます。

記事リスト ( )内の数字はレス数
Nomal高校数学 期待値の問題です(2) | Nomal二項係数(1) | Nomalフェルマーの最終定理の普通の証明(10) | Nomal高校数学レベルの定積分(2) | Nomal場合の数 (カタラン数に関係したもの)(2) | Nomal和文差分を利用した数列について(1) | Nomal面積体積表面積です。(2) | Nomal確率の基礎問題(1) | Nomal微積分(1) | Nomal整数の方程式(1) | Nomal確率の最大値(0) | Nomal至急お願いします(2) | Nomal不等式(3) | Nomal場合の数(2) | Nomalζ関数(0) | Nomal平方数(3) | Nomal形式的べき級数(0) | NomalG(0) | Nomal岩波講座基礎数学集合の補題6.1についての質問(1) | Nomal羅生門(0) | Nomal確率(2) | Nomal約数の個数(5) | Nomal52545の「約数の個数」の式変形について(4) | Nomal不等式(0) | Nomal素因数の個数について(2) | Nomal場合の数(1) | Nomal体(3) | Nomal部分分数分解(3) | Nomal約数(0) | Nomal線形代数の微分(1) | Nomal数珠順列(0) | Nomaleは無理数だけど(0) | Nomal素数(2) | Nomal(削除)(1) | Nomalフーリエ級数展開・フーリエ変換(2) | Nomal線形代数(1) | Nomal無限和(7) | Nomal進数の表現(4) | Nomal高校数学 整数問題(4) | Nomal整数の表現の同値証明(4) | Nomal多項式の既約性(0) | Nomal円錐台の断面積(9) | Nomal相関係数と共分散(1) | Nomallogの計算(3) | Nomaltan(z) を z = π/2 中心にローラン展開する(2) | Nomal複素数平面(1) | Nomal複素数 証明(難)(0) | Nomal確率の問題が分かりません 助けてください(1) | Nomal極限(3) | Nomalメビウス変換(0) | Nomal複素数 写像 (0) | Nomal複素数平面(0) | Nomal解答を教えてください(1) | Nomal解答を教えてください(0) | Nomal解答を教えてください(0) | Nomal解答を教えてください(0) | Nomal解答を教えてください(0) | Nomal確率の不等式(1) | Nomal無理関数の積分(大学)(2) | Nomal複素数(1) | Nomal確率(2) | Nomal囲まれた面積(2) | Nomal複素数(2) | Nomal微分可能な点を求める問題(1) | Nomal初等数学によるフェルマーの最終定理の証明(5) | Nomal極限の問題 2改(1) | Nomal極限の問題2(1) | Nomal極限の問題(1) | Nomal多項式の整除(1) | Nomal三角形(1) | Nomal三角数の和(0) | Nomalコラッツ予想(0) | Nomal平方数(1) | Nomal整数問題(1) | Nomal低レベルな問題ですいません(2) | Nomal中学数学によるフェルマーの最終定理の証明(1) | Nomalガウス整数の平方和(8) | Nomal環でしょうか(2) | Nomal三角関数の式(0) | Nomal大学数学 位相数学(1) | Nomal確率(1) | Nomal1/{z^2(z-1)^2} z=0でローラン展開(1) | Nomal速度(2) | Nomali^iについて(2) | Nomal(x+1)^n-x^n(1) | Nomal定積分(1) | Nomal複素数平面(6) | Nomal円に内接する四角形(2) | Nomal不等式(4) | Nomal代数学(1) | Nomal極限(0) | Nomal大学数学(0) | Nomal三角形(2) | Nomal多項式(1) | Nomal有限体(0) | Nomal場合の数(2) | Nomal同値関係が分かりません(0) | Nomal素因数(1) | Nomal質問(2) | Nomal周期関数(1) |



■記事リスト / ▼下のスレッド
■51918 / 親記事)  ルンゲクッタ法を用いた問題
□投稿者/ シス荘 一般人(1回)-(2022/07/06(Wed) 16:13:27)
    質量 6.0 kg の質点を初速 v0 = 20 m/s 仰角 θ = 15◦, 30◦, 45◦, 60◦, 75◦ を斜方投射する 軌跡を、運動方程式をルンゲクッタ法で解くことで求めて図で示せ。また、それらの軌跡 を比較し、最も飛距離が長いものを答えよ。ただし、重力加速度は 9.8 m/s2 とし、空気 抵抗は考えないものとする。

    ルンゲクッタ方を用いた問題です。図付きで回答をもらえないでしょうか。お願いします。
引用返信/返信 [メール受信/OFF]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■51907 / 親記事)  三角形の基本的な性質
□投稿者/ Visschers 一般人(1回)-(2022/06/30(Thu) 15:15:07)
    △ABCは辺の長さがAB>BC、AC>BCを満たしているものとする。
    この△ABCの内部に点Pをとると、
    PA+PB+PC<AB+AC
    であることの証明を教えてください。
引用返信/返信 [メール受信/OFF]

▽[全レス2件(ResNo.1-2 表示)]
■51909 / ResNo.1)  Re[1]: 三角形の基本的な性質
□投稿者/ らすかる 一般人(6回)-(2022/06/30(Thu) 22:09:56)
    Pを通りBCに平行な直線とAB,ACとの交点をD,Eとすると
    △ADE∽△ABCなのでAD>DE,AE>DE
    ∠APD≧90°のときAD>APなのでAP+DE<AD+AE
    ∠APD<90°のときAE>APなのでAP+DE<AE+AD
    従っていずれの場合もAP+DE<AD+AE … (1)
    よって
    PA+PB+PC<PA+(BD+DP)+(CE+EP)
    =PA+BD+CE+(DP+EP)
    =PA+BD+CE+DE
    =BD+CE+(AP+DE)
    <BD+CE+(AD+AE) (∵(1)より)
    =(AD+BD)+(AE+CE)
    =AB+AC

引用返信/返信 [メール受信/OFF]
■51915 / ResNo.2)  Re[2]: 三角形の基本的な性質
□投稿者/ Visschers 一般人(2回)-(2022/07/02(Sat) 08:42:02)
    なるほど〜!
    こんなに綺麗に示せるんですね。

    ありがとうございました。
解決済み!
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-2]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■51904 / 親記事)  代数学の問題
□投稿者/ Milo 一般人(1回)-(2022/06/29(Wed) 18:37:30)
    大学数学の代数学の問題です。ご協力お願いしたいです。

    問題T :={0,1,2,3,4,5,6,7,8,9}⊂Zを法10に関する完全代表系として固定する。数字「0」を x ∈ Z とする。
    任意の 0 &#8804; i &#8804; 9 に対して、法 10 に関して x + i と合同な T の元を ai とする.また,ai の法 10 に関す る剰余類を ai ∈ Z/10Zとおく.(Z/10Z)^× を Z/10Z の既約剰余類群とする.
    (1) 各0 &#8804; i &#8804; 9に対して,ai を求めよ.
    (2) 加法群 Z/10Z において,ai の位数が 1 となる i をすべて求めよ.
    (3) 加法群 Z/10Z において,ai の位数が 5 となる i をすべて求めよ.
    (4) ai ∈ (Z/10Z)^×となる i をすべて求めよ.
    (5) 乗法群 (Z/10Z)^× において,ai の位数が 1 となる i をすべて求めよ.
    (6) ai が乗法群 (Z/10Z)^× の生成元となるような i をすべて求めよ.
    (答のみでよい.)
引用返信/返信 [メール受信/OFF]

▽[全レス1件(ResNo.1-1 表示)]
■51906 / ResNo.1)  Re[1]: 代数学の問題
□投稿者/ マシュマロ 一般人(21回)-(2022/06/30(Thu) 08:00:42)
http://www.youtube.com/channel/UCHRwEUVvKzCUqRDRYpKam6A
    こんにちは^^

    数字0をxとするという部分の意味がちょっとわかりにくいのですが、
    同値類の元の一つということなら、10nの形の数ということかもしれません。

    そうだとするとx=10nを足しても剰余類としては変わらないので、
    (1)はai=i(0≦i≦9)ですね。
    また位数1というのは単位元なので、(2)はi=0です。

    位数5は5倍してはじめて10の倍数になる数なので、(3)は0以外の偶数、すなわち2,4,6,8ですね。

    (4)は10と互いに素な数なので1,3,7,9です。

    (5)はそのうちの(乗法に関する)単位元なので1ですね。

    またこの乗法群において1の位数は1,9の位数は2,また3と7の位数は4なので、(6)の答えは位数が4となる3,7になります。

    ということで、ご参考になれば幸いです。
    ではでは☆

引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-1]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■51903 / 親記事)  上極限・下極限
□投稿者/ りこ 一般人(1回)-(2022/06/29(Wed) 10:52:52)
    こちらの問題がわからず困っています。どなたか教えていただきたいです!
1284×511 => 250×99

IMG_20220629_105150.jpg
/135KB
引用返信/返信 [メール受信/OFF]

▽[全レス1件(ResNo.1-1 表示)]
■51905 / ResNo.1)  Re[1]: 上極限・下極限
□投稿者/ マシュマロ 一般人(20回)-(2022/06/30(Thu) 07:43:50)
http://www.youtube.com/channel/UCHRwEUVvKzCUqRDRYpKam6A
    こんにちは^^

    数列{an}は−2,3/2,−4/3,5/4,−6/5,……

    となるので、たとえば上限については a2だと3/2以降の数の上限、すなわち3/2です。

    同様に考えて(1)はそれぞれ3/2,3/2,(2n+1)/2n,(2n+1)/2nですね。

    下限については、たとえば a3だと−4/3以降の数の下限なので−4/3になります。

    同様に考えて(2)はそれぞれ、−2,−4/3,−(2n+2)/(2n+1),−(2n+2)/(2n+1)です。

    よってn→∞の極限を考えると(3)はそれぞれ1,−1となりますね。

    ということで、ご参考になれば幸いです。
    ではでは☆
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-1]



■記事リスト / ▲上のスレッド
■51897 / 親記事)  代数学
□投稿者/ もち 一般人(1回)-(2022/06/25(Sat) 18:11:49)
    1日考えてわからなかったので助力をいただきたいです。

    bを単元でないとすると、ユークリッド整域における因数分解b=a1a2・・・arの因数aiのうち、ちょうど一つがbに同伴することを証明したいです。

    以下原文
    Show that in a trivial factorization b = a1 a2 ... a r in a Euclidean domain of a nonunit b, exactly one of the factors a, is an associate of b.
引用返信/返信 [メール受信/OFF]

▽[全レス1件(ResNo.1-1 表示)]
■51902 / ResNo.1)  Re[1]: 代数学
□投稿者/ マシュマロ 一般人(19回)-(2022/06/27(Mon) 08:04:30)
http://www.youtube.com/channel/UCHRwEUVvKzCUqRDRYpKam6A
    こんにちは^^

    原文では trivial factorization となっているのでaiのうち単元でないものは
    1つ以下という問題設定だと思います。
    すべてが単元ならbが単元となってしまうので、単元でないaiが1つだけあり、
    当然、それがbと同伴になります。
    他は単元なのでbと同伴ではなく、命題が成り立ちます。

    一般の因数分解ならば、Zにおいてb=15,a1=3,a2=5とすると、
    3も5も15と同伴にはならないので、反例となります。
    原文の意味だと上記のように示されると思います。

    ご参考になれば幸いです。
    ではでは☆

引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-1]






Mode/  Pass/

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

- Child Tree -
Edit By 数学ナビゲーター