数学ナビゲーター掲示板

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

■ 過去ログ検索の勧め⇒ここを読んでみてください
google検索

 
この掲示板の過去ログをgoogleで検索します。
検索条件:
現在のログを検索過去のログを検索
■ 2006/2/20より、累計:、本日:、昨日:
数式の記述方法
TeX入力ができます。 \[ TeX形式数式 \] あるいは,$ TeX形式数式 $ で数式を記述します。
 TeX形式数式には半角英数字のみです。詳しくは、ここを見てください。文字化けが発生したときはここを見てください。
■ 質問をする方は、回答者に失礼のないようにお願いします。
携帯電話でこの掲示板を見れるようにしました。⇒ここを見てください。
■ 24時間以内に作成されたスレッドは New で表示されます。
■ 24時間以内に更新されたスレッドは UpDate で表示されます。

記事リスト ( )内の数字はレス数
UpDateベクトルについて。(1) | Nomalベクトルについて。(0) | Nomalベクトル解析(1) | Nomal線形代数 証明(0) | Nomalベクトル解析のスカラー場について(2) | Nomalフーリエ展開とフーリエ変換(0) | Nomal加速度の次元と速度の次元(1) | Nomal弘前大学 2010年度 理系 過去問です。(1) | Nomal第2可算公理(0) | Nomalフェルマーの最終定理の簡単な証明9(25) | Nomal線形代数(0) | Nomal確率論 幾何分布(0) | Nomal大学数学 確率論(0) | Nomal線形代数 行列(0) | Nomal無限和(2) | Nomal大学一年 線形代数(1) | Nomal大学で出された行列の課題がわかりません。(1) | Nomal広義積分(0) | Nomal 至急この問題を解説していただきたいです(0) | Nomal有理数(1) | Nomal論理関数(0) | Nomal正規分布(0) | Nomal問題を解いた物を送ってください(0) | Nomal陰関数の問題(0) | Nomal最小費用流問題(0) | Nomalこの問題分かりません(0) | Nomal整数解(2) | Nomal数列の一般項(2) | Nomal統計学 二項分布(0) | Nomal連立微分方程式(1) | Nomal連立方程式(3) | Nomal全ての 整数解 等(0) | Nomal解析学(2) | Nomal行列のn乗(1) | Nomal色々な方法 で(0) | Nomal初期値問題(1) | Nomal解析学(1) | Nomal統計学 確率密度関数 分布関数 確率(0) | Nomal統計学についての質問(3) | Nomal対数尤度関数について!(0) | Nomal関数について(0) | Nomal最小公倍数とはちがいますが。。(2) | Nomal論理を教えて下さい(12) | Nomal三次方程式(2) | Nomal消火栓からの流量を何立米/sにしたら良いのでしようか?水理学、流体力学(2) | Nomal線形代数(0) | Nomal極限(0) | Nomalボルスク・ウラムの定理の証明(0) | Nomalなぜ2乗? 内積の意味は??(4) | Nomal素数(0) | Nomalデルタ関数に関する問題(0) | Nomal正三角形と半円(2) | Nomal不等式(2) | Nomal漸化式(0) | Nomal確率における情報(17) | Nomal統計学の質問(0) | Nomal確率変数(0) | Nomal複数の点によって構成される多角形を相互の距離情報から類推する方法(6) | Nomal正射影再び(笑)(4) | Nomal正射影:正三角形→2等辺三角形(2) | Nomal球面上の2つの円の重なっている部分の面積(0) | Nomal三角法(0) | Nomal大学数学です(0) | Nomal三角形(2) | Nomal数列の疑問(2) | Nomal素数積の評価〜ベルトラン・チェビシェフの定理(5) | Nomaleの極限(2) | Nomal積分(0) | Nomal四角形の極限(2) | Nomalベルトラン・チェビシェフの定理について。(2) | Nomalcosの積分の評価(0) | Nomal動点の確率(2) | Nomalsinの不等式(4) | Nomal極大と変曲(4) | Nomalピタゴラスの定理の簡単な証明(3) | Nomal複素積分の絶対値の評価(2) | Nomalリーマン積分可能性(3) | Nomalデデキントの切断による実数の構成(0) | Nomalベルトラン・チェビチェフの定理について。(0) | Nomalガウスの発散定理(0) | Nomal数列について。(0) | Nomal(1-x)^(-2)の展開式(2) | Nomal線形代数(0) | Nomal京大特色(1) | Nomal高校の範囲での証明(2) | Nomalこの表の見方を教えてください。(0) | Nomalヒルベルト空間(0) | Nomal$D_n$加群のフーリエ変換と関数のフーリエ変換との関係について(0) | Nomal群の問題(5) | Nomal合同式の計算(2) | Nomalプログラミング言語BASIC言語について。(14) | Nomal統計/区画幅について(3) | Nomal2変数関数の極値条件(2) | Nomal素数生成法について(0) | Nomalsupreme 偽物(0) | Nomal合同式の計算(4) | Nomal縦曲線について(0) | Nomal銃曲線における計画高ついて(0) | Nomal測量学について(0) | Nomal訂正です(1) |



■記事リスト / ▼下のスレッド
■50381 / 親記事)  この問題分かりません
□投稿者/ けいと 一般人(1回)-(2020/06/20(Sat) 12:45:28)
    原点 O(0, 0) を始点とし,方向数 a, b をもつ有向線分 ℓ1 と,方向数 a, −b をもつ有向線分 ℓ2
    の位置関係を答えよ.その際,ℓ1 と ℓ2 の方向余弦を求めよ.また,方向数 −a, b をもつ有向線分
    ℓ3 との位置関係,方向数 −b, a をもつ有向線分 ℓ4 との位置関係をそれぞれ答えよ.その際,ℓ3 と
    ℓ4 の方向余弦を求めよ
引用返信/返信 [メール受信/OFF]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■49020 / 親記事)  整数解
□投稿者/ q 一般人(1回)-(2019/02/13(Wed) 21:52:58)
    5 x^2-2 x y-16 x-4 y^2-18 y+2=0    の 整数解を全て 是非求めて下さい;
引用返信/返信 [メール受信/OFF]

▽[全レス2件(ResNo.1-2 表示)]
■49021 / ResNo.1)  Re[1]: 整数解
□投稿者/ mo 一般人(2回)-(2019/02/15(Fri) 23:46:46)
    (2,5),(-20,27),(20,29),(34,27)の4つ
引用返信/返信 [メール受信/OFF]
■50380 / ResNo.2)  Re[2]: 整数解
□投稿者/ q' 一般人(1回)-(2020/06/19(Fri) 22:42:42)
    ×4つ
    (x,y)=(2,-5),(20,-29),(-20,27),(34,27),(-278,387),(436,387),(-484,-437),
    (-6406,-5741),(17354,-24221),(229196,-319877),(-255644,356787),(398362,356787),
    (-3376526,4712427),(5261500,4712427),(-5868700,-5256269),(-77513038,-69424085),
    (209935442,-292995125),...

引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-2]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■50374 / 親記事)  数列の一般項
□投稿者/ がじゅまる 一般人(1回)-(2020/06/16(Tue) 19:27:16)
    a(1)=3,a(n+1)=a(n)^3-3a(n)という漸化式の数列の一般項を求める問題です。
    解き方を教えてください。よろしくお願いします。
引用返信/返信 [メール受信/OFF]

▽[全レス2件(ResNo.1-2 表示)]
■50375 / ResNo.1)  Re[1]: 数列の一般項
□投稿者/ らすかる 一般人(12回)-(2020/06/17(Wed) 03:08:44)
    a[n]=2b[n]とおくと
    b[1]=3/2, b[n+1]=4(b[n])^3-3b[n]
    cosh(3x)=4(coshx)^3-3coshxなので
    x=arccosh(3/2)とおけば
    b[n]=cosh(3^(n-1)x)
    arccosh(3/2)=log((3+√5)/2)なので
    b[n]=cosh(3^(n-1)log((3+√5)/2))
    =cosh(log{((3+√5)/2)^(3^(n-1))})
    ={((3+√5)/2)^(3^(n-1))+1/((3+√5)/2)^(3^(n-1))}/2
    ={((3+√5)/2)^(3^(n-1))+((3-√5)/2)^(3^(n-1))}/2
    ∴a[n]=2b[n]=((3+√5)/2)^(3^(n-1))+((3-√5)/2)^(3^(n-1))

引用返信/返信 [メール受信/OFF]
■50378 / ResNo.2)  Re[1]: 数列の一般項
□投稿者/ bon 一般人(1回)-(2020/06/18(Thu) 10:31:01)
    No50374に返信(がじゅまるさんの記事)
    > a(1)=3,a(n+1)=a(n)^3-3a(n)という漸化式の数列の一般項を求める問題です。
    > 解き方を教えてください。よろしくお願いします。

    らすかる氏の頭脳明晰に慄く ....
    がじゅまる様;どのような書籍に そのような 非線型漸化式が解説してありますか?
    他の 非線型漸化式問題達を 提示ください;

引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-2]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■50377 / 親記事)  統計学 二項分布
□投稿者/ 大学生 一般人(3回)-(2020/06/17(Wed) 23:32:55)
    統計学、二項分布についての問題が分かりません。

    @梅雨時の降雨確率が0.5のとき1週間で少なくとも一日は雨が降る確率P(x>=1)を求めよ。(xは1週間で雨の降った日数で0<=x<=7である。答えだけ分数で答えよ)

    A梅雨時の降雨確率が0.5のとき1週間で3日以上雨が降る確率P(x>=3)を求めよ。(xは1週間で雨の降った日数で0<=x<=7である。答えだけ分数で答えよ)

    よろしくお願いします。
引用返信/返信 [メール受信/OFF]



■記事リスト / ▲上のスレッド
■50371 / 親記事)  連立微分方程式
□投稿者/ gunma 一般人(1回)-(2020/06/16(Tue) 15:15:36)
    x′1 =−5x1 +4x2,
    x′2 =−9x1 +7x2 +te^t
    解答をお願いします。
引用返信/返信 [メール受信/OFF]

▽[全レス1件(ResNo.1-1 表示)]
■50376 / ResNo.1)  Re[1]: 連立微分方程式
□投稿者/ WIZ 一般人(2回)-(2020/06/17(Wed) 10:31:59)
    u = u(t) = x1(t), v = v(t) = x2(t) とおきます。

    u' = -5u+4v・・・・・(1)
    v' = -9u+7v+t(e^t)・・・・・(2)

    (1)より、
    v = (1/4)(u'+5u)・・・・・(3)
    v' = (1/4)(u''+5u')・・・・・(4)

    (3)(4)を(2)に代入して、
    (1/4)(u''+5u') = -9u+7(1/4)(u'+5u)+t(e^t)
    ⇒ u''+5u' = -36u+7(u'+5u)+4t(e^t)
    ⇒ u''-2u'+u = 4t(e^t)
    ⇒ (u''-u')-(u'-u) = 4t(e^t)
    ⇒ {(u'-u)(e^(-t))}' = 4t
    ⇒ (u'-u)(e^(-t)) = 2t^2+C (Cは積分定数)
    ⇒ {u(e^(-t))}' = 2t^2+C
    ⇒ u(e^(-t)) = (2/3)t^3+Ct+D (Dは積分定数)
    ⇒ u = (e^t){(2/3)t^3+Ct+D}

    検算
    u' = (e^t){(2/3)t^3+Ct+D}+(e^t){2t^2+C} = (e^t){(2/3)t^3+2t^2+Ct+C+D}
    u'' = (e^t){(2/3)t^3+2t^2+Ct+C+D}+(e^t){2t^2+4t+C} = (e^t){(2/3)t^3+4t^2+(C+4)t+2C+D}
    {u''-2u'+u}(e^(-t)) = {(2/3)t^3+Ct+D}-2{(2/3)t^3+2t^2+Ct+C+D}+{(2/3)t^3+4t^2+(C+4)t+2C+D} = 4t
    OK!

    上記結果を(3)に代入して、
    v = (1/4)(e^t){{(2/3)t^3+2t^2+Ct+C+D}+5{(2/3)t^3+Ct+D}}
    = (1/4)(e^t){(12/3)t^3+2t^2+6Ct+C+6D}
    = (e^t){t^3+(1/2)t^2+(3/2)Ct+(C+6D)/4}

    検算
    v' = (e^t){t^3+(1/2)t^2+(3/2)Ct+(C+6D)/4}+(e^t){3t^2+t+(3/2)C}
    = (e^t){t^3+(7/2)t^2+(3C/2+1)t+(7C+6D)/4}

    -9u+7v+t(e^t) = (e^t){-9{(2/3)t^3+Ct+D}+7{t^3+(1/2)t^2+(3/2)Ct+(C+6D)/4}+t}
    = (e^t){-6t^3-9Ct-9D+7t^3+(7/2)t^2+(21/2)Ct+(7C+42D)/4+t}
    = (e^t){t^3+(7/2)t^2+(3C/2+1)t+(7C+6D)/4}
    OK!
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-1]






Mode/  Pass/

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

- Child Tree -
Edit By 数学ナビゲーター