数学ナビゲーター掲示板

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

■ 過去ログ検索の勧め⇒ここを読んでみてください
google検索

 
この掲示板の過去ログをgoogleで検索します。
検索条件:
現在のログを検索過去のログを検索
■ 2006/2/20より、累計:、本日:、昨日:
数式の記述方法
TeX入力ができます。 \[ TeX形式数式 \] あるいは,$ TeX形式数式 $ で数式を記述します。
 TeX形式数式には半角英数字のみです。詳しくは、ここを見てください。文字化けが発生したときはここを見てください。
■ 質問をする方は、回答者に失礼のないようにお願いします。
携帯電話でこの掲示板を見れるようにしました。⇒ここを見てください。
■ 24時間以内に作成されたスレッドは New で表示されます。
■ 24時間以内に更新されたスレッドは UpDate で表示されます。

記事リスト ( )内の数字はレス数
Nomal場合の数(2) | Nomal数的推理(2) | Nomal三角形の辺の長さ(6) | Nomal単位円と三角形(1) | Nomal1/xについて(2) | Nomal調べた確率がどれくらい信用できるかを求めたい(0) | Nomal命題の真偽(8) | Nomal期待値(13) | Nomal因数分解(2) | Nomal√の問題(2) | Nomal極形式(6) | Nomaltanと自然数(2) | Nomalα^52(2) | Nomal放物線の標準形(4) | Nomal循環小数(2) | Nomal四角形の辺の長さ(2) | Nomalコラッツ予想について(2) | Nomal三角形の角(3) | Nomal有理数と素数(1) | Nomal円と曲線(3) | Nomalフィボナッチ数列について。(0) | Nomal導関数の定義について(2) | Nomal楕円曲線(1) | Nomallog(1+x)<√x(4) | Nomal円と3次関数(4) | NomalΣと積分の交換(3) | Nomalcos(1)とtan(1/2)(2) | Nomal合成数(2) | Nomal積分について(2) | Nomal因数分解(4) | Nomal2次関数(1) | Nomal常用対数と桁数の関係(2) | Nomal(削除)(2) | Nomal行列を含む偏微分(0) | Nomalカタラン数(4) | Nomal無限級数(1) | Nomalスーパコピーvog.agvol.com/brand-70-c0.html ボーイロンドンブラドスパーピー(0) | Nomal大学数学 4次多項式 フェラーリの解法(0) | Nomalかんたんなフェルマーの最終定理の証明(19) | Nomal写像の問題です。(0) | Nomal離散数学 有向グラフの問題(0) | Nomal原始関数問題(1) | Nomal三角形と円の関係について(0) | Nomal|e^(icosθ)|、|e^(isinθ)|について(2) | Nomal大学数学 重積分(0) | Nomal簡単な論理式〜変な質問ですみませんが・・・(2) | Nomal割り算(1) | Nomal確率の問題です。大至急お願い致します(0) | Nomal整数解(7) | Nomal全ての 整数解 等(4) | Nomal完璧なのコピーbuytowe(0) | Nomal素数(1) | Nomal指数計算の練習(2) | Nomal微分積分(0) | Nomalテイラー展開(0) | Nomal合同式(1) | Nomalエルミート行列(0) | Nomal【大学数学】貨幣需要関数(0) | Nomal陰関数(0) | Nomalフェルマーの最終定理の証明(6) | Nomal統計学(0) | Nomalベクトル空間(0) | Nomal複素数の三角不等式(引き算)(2) | Nomal微分の問題(0) | Nomal体積(1) | Nomalフェルマーの最終定理の証明(z=x+rとおく方法)(1) | Nomal微分可能(2) | Nomalチェビシェフ 偏差値(0) | Nomal線形代数(1) | Nomal複素積分(2) | Nomalテイラー展開(2) | Nomal線形変換(1) | Nomal大学数学 線形代数 部分空間の証明(0) | Nomal証明問題(1) | Nomal一次結合と一次独立(0) | Nomal証明問題です(0) | Nomalz^5 = -1 を解く(2) | Nomal空間上の点(2) | Nomal複素関数の部分分数分解(4) | Nomal熱力学の本に出てくる式変形がわかりません。(0) | Nomalピタゴラス数の求め方(0) | Nomal二項定理を使ったピタゴラスの定理の証明(0) | Nomal二項定理を使ったフェルマーの最終定理の証明(0) | Nomal2次方程式(3) | Nomal数学A 図形の計算(0) | Nomalある式の微分における式変形について(2) | Nomal3次元空間の点(2) | Nomal線形代数」(0) | Nomal統計学の問題(0) | Nomal(削除)(3) | Nomal1/(z^2-1) を z = 1 でローラン展開する。(2) | Nomal無限等比級数について(2) | Nomalcosの不等式(2) | Nomal品質の服(0) | Nomal複素平面上の円(2) | Nomal積分の解き方について(0) | Nomal期待値(2) | Nomal3の個数(7) | Nomal複素数の関数(5) | Nomal分数関数の積分(2) |



■記事リスト / ▼下のスレッド
■50651 / 親記事)  Σと積分の交換
□投稿者/ 7610 一般人(1回)-(2021/03/07(Sun) 17:38:54)
      納k:1〜N]∫[x:-π〜π]f(x)cos(kx)dx

     = ∫[x:-π〜π]f(x)cos(x)dx + ∫[x:-π〜π]f(x)cos(2x)dx + …

     = ∫[x:-π〜π]f(x)dx納k:1〜N]cos(kx)

    という変形は可能ですか?

     可能ならば証明したいのですが

      ∫f(x)cos(kx)dx = -sin(kx)f(x) + ∫f'(x)sin(kx)dx

    ですから、右辺の第1項は定積分でゼロになるところまではわかりますが、それからがわかりません。


引用返信/返信 [メール受信/OFF]

▽[全レス3件(ResNo.1-3 表示)]
■50654 / ResNo.1)  Re[1]: Σと積分の交換
□投稿者/ X 一般人(7回)-(2021/03/07(Sun) 18:52:51)
    そのような変形はできません。
    定数でない被積分関数を積分の外に出すことは
    できないからです。
    変形前はxの関数ではないのに、変形後は
    xの関数になっているのは明らかに
    変ですよね。

    但し
    納k:1〜N]∫[x:-π〜π]f(x)cos(kx)dx
    =∫[x:-π〜π]f(x){納k:1〜N]cos(kx)}dx
    であれば、問題ありません。


引用返信/返信 [メール受信/OFF]
■50655 / ResNo.2)  Re[2]: Σと積分の交換
□投稿者/ 7610 一般人(3回)-(2021/03/07(Sun) 19:01:08)
    > 定数でない被積分関数を積分の外に出すことは
    できないからです。

    ですよねえ。実はさるサイトでもっと複雑なケースの積分だったのですが私自身が勘違いしたのかもしれません。
     素早い回答ありがとうございました。
引用返信/返信 [メール受信/OFF]
■50656 / ResNo.3)  Re[2]: Σと積分の交換
□投稿者/ 7610 一般人(4回)-(2021/03/07(Sun) 19:43:26)
    > 但し
    > 納k:1〜N]∫[x:-π〜π]f(x)cos(kx)dx
    > =∫[x:-π〜π]f(x){納k:1〜N]cos(kx)}dx
    > であれば、問題ありません。
    >
    > すみません。まさにこちらでした。ありがとう。
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-3]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■50641 / 親記事)  cos(1)とtan(1/2)
□投稿者/ 紙 一般人(1回)-(2021/03/05(Fri) 12:15:47)
    cos(1)とtan(1/2)の大小比較はどうやればよいのでしょうか?
引用返信/返信 [メール受信/OFF]

▽[全レス2件(ResNo.1-2 表示)]
■50649 / ResNo.1)  Re[1]: cos(1)とtan(1/2)
□投稿者/ らすかる 一般人(13回)-(2021/03/05(Fri) 18:47:25)
    y=cosx,y=tan(x/2)のグラフと
    y=cosxに(π/3,cos(π/3))で接する接線、
    y=tan(x/2)に(π/3,tan(π/6))で接する接線を考えると
    2接線は(√3)(x-π/3)+2y=1と2(x-π/3)-3y+√3=0で
    その交点のx座標はx=π/3-(30-17√3)/11
    π/3-(30-17√3)/11<(1/3)(22/7)-(30-17√3)/11
    =(357√3-388)/231
    (357√3)^2=382347<383161=619^2から
    357√3<619
    357√3-388<231
    (357√3-388)/231<1
    よって2接線の交点のx座標は1より小さい。
    y=cosxは0<x<π/2で単調減少かつ上に凸なので
    (π/3,cos(π/3))で接する接線はy=cosxより右にある。
    y=tan(x/2)は0<x<π/2で単調増加かつ下に凸なので
    (π/3,tan(π/6))で接する接線はy=tan(x/2)より右にある。
    従って2接線の交点はy=cosxとy=tan(x/2)の交点より右にあるので、
    y=cosxとy=tan(x/2)の交点のx座標は2接線の交点のx座標より小さく、
    すなわち1より小さい。
    ゆえにy=cosxとy=tan(x/2)は0<x<1の範囲内で交わり、
    0<x<π/2でy=cosxは単調減少、y=tan(x/2)は単調増加なので
    x=1においてはtan(x/2)>cosx。
    よってtan(1/2)>cos(1)。

引用返信/返信 [メール受信/OFF]
■50650 / ResNo.2)  Re[2]: cos(1)とtan(1/2)
□投稿者/ 紙 一般人(2回)-(2021/03/05(Fri) 20:23:03)
    ありがとうございます。
    思わずグラフをいくつも描いて交点と接線の交点の関係を確認しましたが納得いたしました。
    素晴らしいです。
解決済み!
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-2]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■50646 / 親記事)  合成数
□投稿者/ 手計算で・・・ 一般人(1回)-(2021/03/05(Fri) 17:46:52)
    電子機器など何も無い状況下で、紙と鉛筆の手計算だけで
    11^10+10
    が合成数であることを示すのってどうやるんでしょうか?
引用返信/返信 [メール受信/OFF]

▽[全レス2件(ResNo.1-2 表示)]
■50647 / ResNo.1)  Re[1]: 合成数
□投稿者/ らすかる 一般人(12回)-(2021/03/05(Fri) 18:03:56)
    明らかに2で割れない。
    11^10≡1, 10≡1 (mod 3) なので3で割れない。
    明らかに5で割れない。
    11^10≡4^10≡16^5≡2^5=32≡4, 10≡3 (mod 7) なので
    11^10+10は7で割り切れる。よって合成数。

引用返信/返信 [メール受信/OFF]
■50648 / ResNo.2)  Re[2]: 合成数
□投稿者/ 手計算で・・・ 一般人(2回)-(2021/03/05(Fri) 18:28:23)
    おお、なるほど
    ありがとうございます
解決済み!
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-2]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■50638 / 親記事)  積分について
□投稿者/ 印度に生まれたい 一般人(1回)-(2021/03/04(Thu) 18:57:03)
    以下の条件を全て満たす実数から実数への関数f(x)の具体例を教えて下さい。
    ・f(x)は0≦x≦1で連続かつ0<x<1で微分可能。
    ・0以上1以下の任意の有理数qに対してf(q)は有理数。
    ・∫[0→1]f(x)dx=√3
引用返信/返信 [メール受信/OFF]

▽[全レス2件(ResNo.1-2 表示)]
■50639 / ResNo.1)  Re[1]: 積分について
□投稿者/ らすかる 一般人(11回)-(2021/03/04(Thu) 21:53:22)
    2021/03/04(Thu) 22:14:54 編集(投稿者)

    たとえば
    f(x)=
    5(4x^2-3)^2/12 (0≦x≦√3/2)
    0 (√3/2≦x≦1)

引用返信/返信 [メール受信/OFF]
■50640 / ResNo.2)  Re[2]: 積分について
□投稿者/ 印度に生まれたい 一般人(2回)-(2021/03/04(Thu) 22:14:17)
    ありがとうございます。
    すごい!!こんなの全然思い付きませんでした。
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-2]



■記事リスト / ▲上のスレッド
■50631 / 親記事)  因数分解
□投稿者/ ホワイトハウス 一般人(1回)-(2021/02/25(Thu) 18:21:49)
    xの4次式 x^4+(a^2+1)(a+2)x-(a+3/4)(a^2+1) が有理数係数の2次式の積に因数分解できるような整数aを全て求めよ。

    教えて下さい。よろしくお願いします。
引用返信/返信 [メール受信/OFF]

▽[全レス4件(ResNo.1-4 表示)]
■50632 / ResNo.1)  Re[1]: 因数分解
□投稿者/ らすかる 一般人(8回)-(2021/02/26(Fri) 14:39:24)
    2021/02/28(Sun) 12:27:32 編集(投稿者)

    「整数係数多項式が有理数の範囲で因数分解されれば、整数の範囲で因数分解される」
    という定理により
    x^4+(a^2+1)(a+2)x-(a+3/4)(a^2+1)が有理数係数の二次式の積に因数分解できる

    4x^4+4(a^2+1)(a+2)x-(4a+3)(a^2+1)が有理数係数の二次式の積に因数分解できる

    4x^4+4(a^2+1)(a+2)x-(4a+3)(a^2+1)が整数係数の二次式の積に因数分解できる
    となります。

    4x^4+4(a^2+1)(a+2)x-(4a+3)(a^2+1)=(4x^2+bx+c)(x^2+dx+e) (b,c,d,eは整数)
    とおいて右辺を展開すると
    4x^4+(b+4d)x^3+(c+4e+bd)x^2+(be+cd)x+ce
    b+4d=0, c+4e+bd=0からb=-4d, c=4d^2-4eなので代入して
    4x^4+4(a^2+1)(a+2)x-(4a+3)(a^2+1)=(4x^2-4dx+4d^2-4e)(x^2+dx+e)
    =4(x^2-dx+d^2-e)(x^2+dx+e)
    aが整数のとき、元の式の定数項 -(a+3/4)(a^2+1)は整数にならないが
    上記の分解では-e^2という整数になり矛盾するので不適。

    4x^4+4(a^2+1)(a+2)x-(4a+3)(a^2+1)=(2x^2+bx+c)(2x^2+dx+e) (b,c,d,eは整数)
    とおいて右辺を展開すると
    4x^4+2(b+d)x^3+(2c+2e+bd)x^2+(be+cd)x+ce
    2(b+d)=0, 2c+2e+bdからb=-d, c=d^2/2-e
    cは整数なのでdは偶数でなければならない。よってd=2f(fは整数)として
    4x^4+4(a^2+1)(a+2)x-(4a+3)(a^2+1)=(2x^2-2fx+2f^2-e)(2x^2+2fx+e)
    =4x^4+4f(f^2-e)x+e(2f^2-e)
    となるから
    4(a^2+1)(a+2)=4f(f^2-e), -(4a+3)(a^2+1)=e(2f^2-e)
    2式からeを消去して整理すると
    (f^2-a^2-1){(a^2+1)(a+2)^2+f^2(a^2+f^2+1)}=0
    (a^2+1)(a+2)^2+f^2(a^2+f^2+1)=0のときa=-2,f=0
    このとき-(4a+3)(a^2+1)=e(2f^2-e)からe^2=-25となり不適
    f^2-a^2-1=0のとき(f+a)(f-a)=1から解は(a,f)=(0,±1)となりa=0
    逆にa=0のとき(与式)=(x^2-x+3/2)(x^2+x-1/2)となり条件を満たす。
    よって条件を満たす整数aはa=0のみ。

引用返信/返信 [メール受信/OFF]
■50635 / ResNo.2)  Re[2]: 因数分解
□投稿者/ ホワイトハウス 一般人(2回)-(2021/02/28(Sun) 09:33:02)
    有難うございます。
    { }内が0ではないということはすぐに分かるのでしょうか?
    a=-2, f=0のとき0になって4x^4+25=4x^4-e^2となり不適当とはなりますが・・・
引用返信/返信 [メール受信/OFF]
■50636 / ResNo.3)  Re[3]: 因数分解
□投稿者/ らすかる 一般人(10回)-(2021/02/28(Sun) 12:28:01)
    ごめんなさい、何か勘違いして見落としていたようです。
    元の回答の「{ }内は正だから・・・」のあたりを修正しましたので
    再度見ていただけたらと思います。

引用返信/返信 [メール受信/OFF]
■50637 / ResNo.4)  Re[4]: 因数分解
□投稿者/ ホワイトハウス 一般人(3回)-(2021/03/03(Wed) 11:24:51)
    有難うございました。
    本当に大変参考になりました。
解決済み!
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-4]






Mode/  Pass/

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

- Child Tree -
Edit By 数学ナビゲーター