数学ナビゲーター掲示板

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

■ 過去ログ検索の勧め⇒ここを読んでみてください
google検索

 
この掲示板の過去ログをgoogleで検索します。
検索条件:
現在のログを検索過去のログを検索
■ 2006/2/20より、累計:、本日:、昨日:
数式の記述方法
TeX入力ができます。 \[ TeX形式数式 \] あるいは,$ TeX形式数式 $ で数式を記述します。
 TeX形式数式には半角英数字のみです。詳しくは、ここを見てください。文字化けが発生したときはここを見てください。
■ 質問をする方は、回答者に失礼のないようにお願いします。
携帯電話でこの掲示板を見れるようにしました。⇒ここを見てください。
■ 24時間以内に作成されたスレッドは New で表示されます。
■ 24時間以内に更新されたスレッドは UpDate で表示されます。

記事リスト ( )内の数字はレス数
New 至急この問題を解説していただきたいです(0) | Nomal広義積分(0) | Nomal加速度の次元と速度の次元(0) | Nomal有理数(1) | Nomal論理関数(0) | Nomal正規分布(0) | Nomal問題を解いた物を送ってください(0) | Nomal陰関数の問題(0) | Nomal最小費用流問題(0) | Nomalこの問題分かりません(0) | Nomal整数解(2) | Nomal数列の一般項(2) | Nomal統計学 二項分布(0) | Nomal連立微分方程式(1) | Nomal連立方程式(3) | Nomal全ての 整数解 等(0) | Nomal解析学(2) | Nomal行列のn乗(1) | Nomal色々な方法 で(0) | Nomal初期値問題(1) | Nomal解析学(1) | Nomal統計学 確率密度関数 分布関数 確率(0) | Nomal統計学についての質問(3) | Nomal対数尤度関数について!(0) | Nomal関数について(0) | Nomal最小公倍数とはちがいますが。。(2) | Nomal論理を教えて下さい(12) | Nomal三次方程式(2) | Nomal消火栓からの流量を何立米/sにしたら良いのでしようか?水理学、流体力学(2) | Nomal線形代数(0) | Nomal極限(0) | Nomalボルスク・ウラムの定理の証明(0) | Nomalなぜ2乗? 内積の意味は??(4) | Nomal素数(0) | Nomalデルタ関数に関する問題(0) | Nomal正三角形と半円(2) | Nomal不等式(2) | Nomal漸化式(0) | Nomal確率における情報(17) | Nomal統計学の質問(0) | Nomal確率変数(0) | Nomal複数の点によって構成される多角形を相互の距離情報から類推する方法(6) | Nomal正射影再び(笑)(4) | Nomal正射影:正三角形→2等辺三角形(2) | Nomal球面上の2つの円の重なっている部分の面積(0) | Nomal三角法(0) | Nomal大学数学です(0) | Nomal三角形(2) | Nomalフェルマーの最終定理の簡単な証明9(7) | Nomal数列の疑問(2) | Nomal素数積の評価〜ベルトラン・チェビシェフの定理(5) | Nomaleの極限(2) | Nomal積分(0) | Nomal四角形の極限(2) | Nomalベルトラン・チェビシェフの定理について。(2) | Nomalcosの積分の評価(0) | Nomal動点の確率(2) | Nomalsinの不等式(4) | Nomal極大と変曲(4) | Nomalピタゴラスの定理の簡単な証明(3) | Nomal複素積分の絶対値の評価(2) | Nomalリーマン積分可能性(3) | Nomalデデキントの切断による実数の構成(0) | Nomalベルトラン・チェビチェフの定理について。(0) | Nomalガウスの発散定理(0) | Nomal数列について。(0) | Nomal(1-x)^(-2)の展開式(2) | Nomal線形代数(0) | Nomal京大特色(1) | Nomal高校の範囲での証明(2) | Nomalこの表の見方を教えてください。(0) | Nomalヒルベルト空間(0) | Nomal$D_n$加群のフーリエ変換と関数のフーリエ変換との関係について(0) | Nomal群の問題(5) | Nomal合同式の計算(2) | Nomalプログラミング言語BASIC言語について。(14) | Nomal統計/区画幅について(3) | Nomal2変数関数の極値条件(2) | Nomal素数生成法について(0) | Nomalsupreme 偽物(0) | Nomal合同式の計算(4) | Nomal縦曲線について(0) | Nomal銃曲線における計画高ついて(0) | Nomal測量学について(0) | Nomal訂正です(1) | Nomal対数の取り方、シグモイド、ロジスティック関数(0) | Nomal緩和曲線の開始位置と終了地点および途中の高さxについて(0) | Nomalf'(x) の増減の判定方法(3) | Nomal三角形と内接円について改(1) | Nomal三角形と内接円について。(1) | Nomal増減表の作り方(6) | Nomal4次関数(3) | Nomal約数を mod 13 で見る(1) | Nomal三葉曲線の長さについて(2) | Nomal自作問題(3) | Nomalフェルマーの最終定理の簡単な証明9(23) | Nomal(削除)(0) | Nomalケプラー方程式による惑星の会合計算(0) | Nomal追いかけ算 惑星会合時期(1) | Nomal担当者の時間割(2) |



■記事リスト / ▼下のスレッド
■48893 / 親記事)  整数の個数と極限
□投稿者/ ボンボニエール 一般人(1回)-(2018/11/17(Sat) 19:08:40)
    nを自然数とする。整数kに関する次の条件(C),(D)を考える。
    (C) 0≦k<n 
    (D) k/n≦1/m<(k+1)/n を満たす自然数mが存在する。
    条件(C),(D)をどちらも満たす整数kの個数をT[n]とする。
    lim[n→∞](log(T[n]))/(log(n))
    を求めよ。

    この問題を教えて下さい。
    よろしくお願いします。
引用返信/返信 [メール受信/OFF]

▽[全レス5件(ResNo.1-5 表示)]
■48896 / ResNo.1)  Re[1]: 整数の個数と極限
□投稿者/ muturajcp 一般人(15回)-(2018/11/18(Sun) 21:25:42)
    nを自然数とする。整数kに関する次の条件(C),(D)を考える。
    (C) 0≦k<n 
    (D) k/n≦1/m<(k+1)/n を満たす自然数mが存在する。
    条件(C),(D)をどちらも満たす整数kの個数をT[n]とする。
    k<nだから
    k+1≦nだから
    k/n≦1/m<(k+1)/n≦1だから
    k/n≦1/m<1となる最大の1/mは1/2だから
    T[n]は
    k/n≦1/2となるkの個数となる
    k/n≦1/2となるkの最大値は
    k≦n/2となるkの最大値で
    n/2の整数部[n/2]=int[n/2]だから
    T[n]=[n/2]+1
    [n/2]≦n/2<[n/2]+1
    n/2<[n/2]+1≦n/2+1=(n+2)/2
    n/2<T[n]≦(n+2)/2
    (log(n/2))/(log(n))≦(log(T[n]))/(log(n))≦(log((n+2)/2))/(log(n))
    {log(n)-log(2)}/(log(n))≦(log(T[n]))/(log(n))≦{log(n)+log(1+2/n)-log(2)}/log(n)
    1-log(2)/log(n)≦(log(T[n]))/(log(n))≦1+{log(1+2/n)-log(2)}/log(n)
    lim[n→∞]1-log(2)/log(n)≦lim[n→∞](log(T[n]))/(log(n))≦lim[n→∞]1+{log(1+2/n)-log(2)}/log(n)
    1≦lim[n→∞](log(T[n]))/(log(n))≦1

    lim[n→∞](log(T[n]))/(log(n))=1

引用返信/返信 [メール受信/OFF]
■48897 / ResNo.2)  Re[1]: 整数の個数と極限
□投稿者/ らすかる 一般人(33回)-(2018/11/18(Sun) 22:25:44)
    (D)を逆数にするとn/(k+1)<m≦n/k
    k≦√(n+1/4)-1/2のときn/k-n/(k+1)≧1だから
    k≦√(n+1/4)-1/2を満たすkに対してはmが必ず存在し、
    これは[√(n+1/4)-1/2]+1個ある(+1はk=0の分)。
    k>√(n+1/4)-1/2で存在するmは[n/{√(n+1/4)-1/2}]-a個
    (aは√(n+1/4)-1/2が整数のとき1、そうでないとき2)
    なので、T[n]=[√(n+1/4)-1/2]+1+[n/{√(n+1/4)-1/2}]-a
    √n-2<[√(n+1/4)-1/2]<√n
    √n-1<[n/{√(n+1/4)-1/2}]<√n+1
    なので2√n-4<T[n]<2√n+1
    従って
    lim[n→∞]log(2√n-4)/log(n)≦lim[n→∞]log(T[n])/log(n)≦lim[n→∞]log(2√n+1)/log(n)
    から
    lim[n→∞]log(T[n])/log(n)=1/2

引用返信/返信 [メール受信/OFF]
■48898 / ResNo.3)  Re[2]: 整数の個数と極限
□投稿者/ muturajcp 一般人(16回)-(2018/11/19(Mon) 19:29:13)
    求めるのはmの個数ではなく
    kの個数です
引用返信/返信 [メール受信/OFF]
■48899 / ResNo.4)  Re[3]: 整数の個数と極限
□投稿者/ らすかる 一般人(34回)-(2018/11/19(Mon) 21:19:36)
    > 求めるのはmの個数ではなくkの個数です
    私はkの個数を求めています。
    mの個数は無限個なので意味がないですね。

    例えばn=10000のとき
    m=2のときk=5000は条件を満たす
    m=3のときk=3333は条件を満たす
    m=4のときk=2500は条件を満たす
    ・・・
    m=100のときk=100は条件を満たす
    となり、k≧100で条件を満たすkは99個です。
    (2≦m≦100に対して、条件を満たすkは重複しません。)
    # m≦100では「条件を満たすmの個数」=「条件を満たすkの個数」なので
    # その部分から「mの個数を求めている」と感じられたのでしょうか。

    そしてk<100に対しては必ず条件を満たすmが存在しますので、
    k<100で条件を満たすのはk=0〜99の100個です。
    従ってn=10000のときはT[n]=99+100=199となります。
    この例のように、nが大きい時、T[n]は約2√nになりますので、
    求める極限値は1/2となります。

    上の解答は、この例をもう少し厳密に書いたものです。

引用返信/返信 [メール受信/OFF]
■48902 / ResNo.5)  Re[4]: 整数の個数と極限
□投稿者/ ボンボニエール 一般人(2回)-(2018/11/21(Wed) 11:01:19)
    1/2ですね。
    具体例も解説していただき大変理解が深まりました。
    ありがとうございました。
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-5]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■48889 / 親記事)  数列
□投稿者/ いらが 一般人(1回)-(2018/11/14(Wed) 11:54:47)
    数列a[n](n=1,2,3,...)を
    a[n]=n!*(Σ[k=n+1,∞]1/k!)
    と定めると、
    a[n]>a[n+1] (n=1,2,3,...)
    であることの証明を
    教えて下さい。
    お願いします。
引用返信/返信 [メール受信/OFF]

▽[全レス2件(ResNo.1-2 表示)]
■48890 / ResNo.1)  Re[1]: 数列
□投稿者/ らすかる 一般人(32回)-(2018/11/14(Wed) 15:49:21)
    a[n]-a[n+1]
    ={n!Σ[k=n+1〜∞]1/k!}-{(n+1)!Σ[k=n+2〜∞]1/k!}
    =n!{{Σ[k=n+1〜∞]1/k!}-{(n+1)Σ[k=n+2〜∞]1/k!}}
    =n!{{Σ[k=n+1〜∞]1/k!}-{Σ[k=n+2〜∞]1/k!}-n{Σ[k=n+2〜∞]1/k!}}
    =n!{1/(n+1)!-n{Σ[k=n+2〜∞]1/k!}}
    >n!{1/(n+1)!-n{Σ[k=1〜∞]1/{(n+1)!(n+2)^k}}}
    ={n!/(n+1)!}{1-n{Σ[k=1〜∞]1/(n+2)^k}}
    ={1/(n+1)}{1-n/(n+1)}
    ={1/(n+1)}{1/(n+1)}
    =1/(n+1)^2
    >0
    なので
    a[n]>a[n+1]

引用返信/返信 [メール受信/OFF]
■48892 / ResNo.2)  Re[2]: 数列
□投稿者/ いらが 一般人(2回)-(2018/11/15(Thu) 10:23:52)
    有り難うございます。
    大変助かりました。
解決済み!
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-2]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■48850 / 親記事)  極限
□投稿者/ 三角関数 一般人(1回)-(2018/10/01(Mon) 09:52:00)
    x,y,zは0≦x,y,z<2πをみたす実数で、さらに
    数列{cosnx+cosny+cosnz}と{sinnx+sinny+sinnz}が
    n→∞でどちらも収束するという。x,y,zを求めよ。

    教えて下さい。
    お願いします。
引用返信/返信 [メール受信/OFF]

▽[全レス6件(ResNo.2-6 表示)]
■48878 / ResNo.2)  Re[2]: 極限
□投稿者/ 三角関数 一般人(2回)-(2018/10/30(Tue) 09:24:52)
    どういうことでしょうか?
引用返信/返信 [メール受信/OFF]
■48880 / ResNo.3)  Re[3]: 極限
□投稿者/ muturajcp 一般人(7回)-(2018/10/30(Tue) 21:11:25)
    x=0
    y=0
    z=0
    とすると
    lim_{n→∞}cos(nx)+cos(ny)+cos(nz)=cos(0)+cos(0)+cos(0)=1+1+1=3
    cosnx+cosny+cosnzは3に収束する
    lim_{n→∞}sin(nx)+sin(ny)+sin(nz)=sin(0)+sin(0)+sin(0)=0+0+0=0
    sinnx+sinny+sinnzは0に収束する

    x=0
    y=0
    z=0


引用返信/返信 [メール受信/OFF]
■48882 / ResNo.4)  Re[4]: 極限
□投稿者/ 三角関数 一般人(3回)-(2018/11/01(Thu) 10:23:32)
    cos(nx)+cos(ny)+cos(nz)、
    sin(nx)+sin(ny)+sin(nz)
    が収束するならば、
    x=y=z=0である

    ことを示していただけませんか?
引用返信/返信 [メール受信/OFF]
■48883 / ResNo.5)  Re[1]: 極限
□投稿者/ らすかる 一般人(31回)-(2018/11/01(Thu) 18:15:09)
    x,y,zがどんな値であっても、
    nを適当に定めればcos(nx)+cos(ny)+cos(nz)を
    いくらでも3に近くすることができるから、
    cos(nx)+cos(ny)+cos(nz)はnによらず3でなければならない。
    よってx=y=z=0。

引用返信/返信 [メール受信/OFF]
■48887 / ResNo.6)  Re[1]: 極限
□投稿者/ muturajcp 一般人(13回)-(2018/11/10(Sat) 20:36:41)
    x/(2π),y/(2π),z/(2π)が有理数の時
    0≦x/(2π)<1
    0≦y/(2π)<1
    0≦z/(2π)<1

    Q=(全有理数)
    Z=(全整数)
    N=(全自然数)
    f(n)=cos(nx)+cos(ny)+cos(nz)
    lim_{n→∞}f(n)=α
    {x/(2π),y/(2π),z/(2π)}⊂Q
    とすると
    x/(2π)=u/a
    y/(2π)=v/b
    z/(2π)=w/c
    {a,b,c}⊂N
    {u,v,w}⊂Z
    となるa,b,c,u,v,wがある
    ax=2uπ
    by=2vπ
    cz=2wπ
    だから
    n∈Nに対して
    k(n)=abcn
    とすると
    lim_{n→∞}f(k(n))
    =lim_{n→∞}cos(k(n)x)+cos(k(n)y)+cos(k(n)z)
    =lim_{n→∞}cos(abcnx)+cos(abcny)+cos(abcnz)
    =lim_{n→∞}cos(2bcnuπ)+cos(2acnvπ)+cos(2abnwπ)
    =3
    {f(k(n))}は{f(n)}の部分列だから
    部分列{f(k(n))}が3に収束するのだから
    {f(n)}も3に収束しなければならないから
    α=3
    lim_{n→∞}cos(nx)+cos(ny)+cos(nz)=3

    n∈Nに対して
    m(n)=abcn+1
    とすると
    lim_{n→∞}f(m(n))
    =lim_{n→∞}cos(m(n)x)+cos(m(n)y)+cos(m(n)z)
    =lim_{n→∞}cos((abcn+1)x)+cos((abcn+1)y)+cos((abcn+1)z)
    =lim_{n→∞}cos(2bcnuπ+x)+cos(2acnvπ+y)+cos(2abnwπ+z)
    =cos(x)+cos(y)+cos(z)
    ↓{f(m(n))}は{f(n)}の部分列だから
    ↓{f(n))}が3に収束するのだから
    ↓{f(m(n))}も3に収束しなければならないから
    =3

    cos(x)+cos(y)+cos(z)=3
    ↓cos(x)≦1,cos(y)≦1,cos(z)≦1だから
    cos(x)=1,cos(y)=1,cos(z)=1
    ↓0≦x<2π,0≦y<2π,0≦z<2πだから
    x=y=z=0
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-6]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■48333 / 親記事)  確率について。
□投稿者/ コルム 一般人(1回)-(2017/08/15(Tue) 00:39:38)
    1から1000まで書かれたカードが1枚ずつあります。
    その中から無作為に2枚同時に引き、大きい方の数をP、小さいほうの数をQ
    とするとき、
    log10(P/Q)<[log10(P/Q)]+log103
    となる確率を求めたいのですが、どこから手をつけてよいのか分かりません。
    教えていただけると幸いです。
引用返信/返信 [メール受信/OFF]

▽[全レス1件(ResNo.1-1 表示)]
■48881 / ResNo.1)  Re[1]: 確率について。
□投稿者/ muturajcp 一般人(8回)-(2018/10/30(Tue) 21:21:41)
    1から1000まで書かれたカードが1枚ずつある
    その中から無作為に2枚同時に引き、大きい方の数をP、小さいほうの数をQ
    とするとき、
    全場合の数は
    1000C2=1000*999/2=500*999=499500

    1≦Q<P≦1000
    1/1000<1/Q≦1
    1<P/Q≦1000

    log10(P/Q)<[log10(P/Q)]+log_10(3)
    となる時

    1<P/Q<10の時
    [log10(P/Q)]=0
    log10(P/Q)<log_10(3)
    1<P/Q<3
    Q+1≦P≦3Q-1
    Q+1≦P≦1000
    1≦Q≦999

    1≦Q≦333の時,Q+1≦P≦3Q-1,の2Q-1通り
    334≦Q≦999の時,Q+1≦P≦1000,の1000-Q通り
    だから
    Σ_{Q=1〜333}(2Q-1)+Σ_{Q=334〜999}(1000-Q)
    通り

    10≦P/Q<100の時
    [log10(P/Q)]=1
    log10(P/Q)<1+log_10(3)=log_10(10)+log_10(3)=log_10(30)
    10≦P/Q<30
    10Q≦P<30Q
    10Q≦P≦30Q-1
    10Q≦P≦min(30Q-1,1000)
    10Q≦1000
    1≦Q≦100

    1≦Q≦33の時10Q≦P≦30Q-1の20Q通り
    34≦Q≦100の時10Q≦P≦1000の1001-10Q通り
    だから
    Σ_{Q=1〜33}20Q+Σ_{Q=34〜100}(1001-10Q)
    通り

    100≦P/Q<1000の時
    [log10(P/Q)]=2
    log10(P/Q)<2+log_10(3)=log_10(100)+log_10(3)=log_10(300)
    100≦P/Q<300
    100Q≦P<300Q
    100Q≦P≦min(300Q-1,1000)
    100Q≦P≦1000
    1≦Q≦10

    1≦Q≦3の時100Q≦P≦300Q-1の200Q通り
    4≦Q≦10の時100Q≦P≦1000の1001-100Q通り
    だから
    Σ_{Q=1〜3}200Q+Σ_{Q=4〜10}(1001-100Q)
    通り

    P/Q=1000の時
    [log10(P/Q)]=3
    log10(P/Q)<3+log_10(3)=log_10(1000)+log_10(3)=log_10(3000)
    P/Q=1000<3000
    Q=1,P=1000

    1
    通り

    Σ_{Q=1〜333}(2Q-1)+Σ_{Q=334〜999}(1000-Q)
    +Σ_{Q=1〜33}20Q+Σ_{Q=34〜100}(1001-10Q)
    +Σ_{Q=1〜3}200Q+Σ_{Q=4〜10}(1001-100Q)
    +1
    =
    2Σ_{Q=1〜333}Q-333+Σ_{n=1〜666}n
    +20Σ_{Q=1〜33}Q+Σ_{Q=34〜100}{10(101-Q)-9}
    +200Σ_{Q=1〜3}Q+Σ_{Q=4〜10}{100(11-Q)-99}
    +1
    =
    333*334-333+333*667
    +10*33*34-9(100-33)+10Σ_{Q=34〜100}(101-Q)
    +100*3*4-99(10-3)+100Σ_{Q=4〜10}(11-Q)
    +1
    =
    333*333+333*667
    +10*33*34-9*67+10Σ_{n=1〜67}n
    +100*3*4-99*7+100Σ_{n=1〜7}n
    +1
    =
    333(333+667)
    +10*33*34-9*67+10*67*68/2
    +100*3*4-99*7+100*7*8/2
    +1
    =
    333*1000
    +10*33*34-9*67+10*67*34
    +100*3*4-99*7+100*7*4
    +1
    =
    333000
    +340(33+67)-603
    +1200-693+2800
    +1
    =
    333000
    +34000-603
    +4000-693
    +1
    =
    371000-1296+1
    =
    369705
    通り

    log10(P/Q)<[log10(P/Q)]+log10(3)
    となる確率は

    369705/499500
    =
    24647/33300≒0.74
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-1]



■記事リスト / ▲上のスレッド
■48354 / 親記事)  ベクトル場の問題
□投稿者/ たなお 一般人(1回)-(2017/09/15(Fri) 13:32:16)
http://https://box.yahoo.co.jp/guest/viewer?sid=box-l-fmwliude5yowkad2xybrogsrcy-1001&uniqid=744a30f1-e6b9-465c-94e3-626b12fb7d54
    ベクトル場の問題で質問があります。

    添付画像の大問10と11を解いてみましたが、証明がこれで正しいのか自信がありません。
    証明方法はこれで合ってますでしょうか。また、より良い解き方があればそれも教えていただければとお思います。(ちなみに大問11について、自分の方法だとBy の第一項が何故マイナスにする必要があるのか分かりません。マイナスになるにはそれ相応の理由があるはずだと思うのですが。。)

    自分でやった計算はURLのリンク先にUPしています。

    よろしくおねがいいたします。
1024×768 => 250×187

1505449936.jpeg
/162KB
引用返信/返信 [メール受信/OFF]

▽[全レス1件(ResNo.1-1 表示)]
■48874 / ResNo.1)  Re[1]: ベクトル場の問題
□投稿者/ muturajcp 一般人(5回)-(2018/10/27(Sat) 09:29:31)
    10)
    全空間で定義されたベクトル場A=Axi+Ayj+Azkが∇×A=0をとする.
    点P0(x0,y0,z0)を固定し
    φ(x,y,z)=∫_{x0〜x}Ax(x,y,z)dx+∫_{y0〜y}Ay(x0,y,z)dy+∫_{z0〜z}Az(x0,y0,z)dz
    とおけば

    ∇φ
    =(∂φ/∂x,∂φ/∂y,∂φ/∂z)
    =(Ax,Ay,Az)
    =A

    11)
    全空間で定義されたベクトル場A=Axi+Ayj+Azkが∇・A=0を満足しているとする
    点P0(x0,y0,z0)を固定し
    Bx=∫_{z0〜z}Ay(x,y,z)dz
    By=-∫_{z0〜z}Ax(x,y,z)dz+∫_{x0〜x}Az(x,y,z0)dx
    Bz=0
    とおき,B=Bxi+Byjとすれば
    ∂Bz/∂y-∂By/∂z
    =-∂By/∂z
    =-(∂/∂z){-∫_{z0〜z}Ax(x,y,z)dz}-(∂/∂z)∫_{x0〜x}Az(x,y,z0)dx
    =(∂/∂z)∫_{z0〜z}Ax(x,y,z)dz
    =Ax

    ∂Bx/∂z-∂Bz/∂x
    =∂Bx/∂z
    =(∂/∂z)∫_{z0〜z}Ay(x,y,z)dz
    =Ay

    ∂By/∂x-∂Bx/∂y
    =(∂/∂x){-∫_{z0〜z}Ax(x,y,z)dz+∫_{x0〜x}Az(x,y,z0)dx}-(∂/∂y)∫_{z0〜z}Ay(x,y,z)dz
    =(∂/∂x){∫_{x0〜x}Az(x,y,z0)dx}
    =Az

    だから

    ∇×B
    =(∂Bz/∂y-∂By/∂z,∂Bx/∂z-∂Bz/∂x,∂By/∂x-∂Bx/∂y)
    =(Ax,Ay,Az)
    =A

    By の第一項がプラスの場合は
    ∇×B=(-Ax,Ay,Az)≠A
    となるので
    By の第一項はマイナスでなければ∇×B=Aが成立しません
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-1]






Mode/  Pass/

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

- Child Tree -
Edit By 数学ナビゲーター