数学ナビゲーター掲示板

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

■ 過去ログ検索の勧め⇒ここを読んでみてください
google検索

 
この掲示板の過去ログをgoogleで検索します。
検索条件:
現在のログを検索過去のログを検索
■ 2006/2/20より、累計:、本日:、昨日:
数式の記述方法
TeX入力ができます。 \[ TeX形式数式 \] あるいは,$ TeX形式数式 $ で数式を記述します。
 TeX形式数式には半角英数字のみです。詳しくは、ここを見てください。文字化けが発生したときはここを見てください。
■ 質問をする方は、回答者に失礼のないようにお願いします。
携帯電話でこの掲示板を見れるようにしました。⇒ここを見てください。
■ 24時間以内に作成されたスレッドは New で表示されます。
■ 24時間以内に更新されたスレッドは UpDate で表示されます。

記事リスト ( )内の数字はレス数
Nomal場合の数(2) | Nomal数的推理(2) | Nomal三角形の辺の長さ(6) | Nomal単位円と三角形(1) | Nomal1/xについて(2) | Nomal調べた確率がどれくらい信用できるかを求めたい(0) | Nomal命題の真偽(8) | Nomal期待値(13) | Nomal因数分解(2) | Nomal√の問題(2) | Nomal極形式(6) | Nomaltanと自然数(2) | Nomalα^52(2) | Nomal放物線の標準形(4) | Nomal循環小数(2) | Nomal四角形の辺の長さ(2) | Nomalコラッツ予想について(2) | Nomal三角形の角(3) | Nomal有理数と素数(1) | Nomal円と曲線(3) | Nomalフィボナッチ数列について。(0) | Nomal導関数の定義について(2) | Nomal楕円曲線(1) | Nomallog(1+x)<√x(4) | Nomal円と3次関数(4) | NomalΣと積分の交換(3) | Nomalcos(1)とtan(1/2)(2) | Nomal合成数(2) | Nomal積分について(2) | Nomal因数分解(4) | Nomal2次関数(1) | Nomal常用対数と桁数の関係(2) | Nomal(削除)(2) | Nomal行列を含む偏微分(0) | Nomalカタラン数(4) | Nomal無限級数(1) | Nomalスーパコピーvog.agvol.com/brand-70-c0.html ボーイロンドンブラドスパーピー(0) | Nomal大学数学 4次多項式 フェラーリの解法(0) | Nomalかんたんなフェルマーの最終定理の証明(19) | Nomal写像の問題です。(0) | Nomal離散数学 有向グラフの問題(0) | Nomal原始関数問題(1) | Nomal三角形と円の関係について(0) | Nomal|e^(icosθ)|、|e^(isinθ)|について(2) | Nomal大学数学 重積分(0) | Nomal簡単な論理式〜変な質問ですみませんが・・・(2) | Nomal割り算(1) | Nomal確率の問題です。大至急お願い致します(0) | Nomal整数解(7) | Nomal全ての 整数解 等(4) | Nomal完璧なのコピーbuytowe(0) | Nomal素数(1) | Nomal指数計算の練習(2) | Nomal微分積分(0) | Nomalテイラー展開(0) | Nomal合同式(1) | Nomalエルミート行列(0) | Nomal【大学数学】貨幣需要関数(0) | Nomal陰関数(0) | Nomalフェルマーの最終定理の証明(6) | Nomal統計学(0) | Nomalベクトル空間(0) | Nomal複素数の三角不等式(引き算)(2) | Nomal微分の問題(0) | Nomal体積(1) | Nomalフェルマーの最終定理の証明(z=x+rとおく方法)(1) | Nomal微分可能(2) | Nomalチェビシェフ 偏差値(0) | Nomal線形代数(1) | Nomal複素積分(2) | Nomalテイラー展開(2) | Nomal線形変換(1) | Nomal大学数学 線形代数 部分空間の証明(0) | Nomal証明問題(1) | Nomal一次結合と一次独立(0) | Nomal証明問題です(0) | Nomalz^5 = -1 を解く(2) | Nomal空間上の点(2) | Nomal複素関数の部分分数分解(4) | Nomal熱力学の本に出てくる式変形がわかりません。(0) | Nomalピタゴラス数の求め方(0) | Nomal二項定理を使ったピタゴラスの定理の証明(0) | Nomal二項定理を使ったフェルマーの最終定理の証明(0) | Nomal2次方程式(3) | Nomal数学A 図形の計算(0) | Nomalある式の微分における式変形について(2) | Nomal3次元空間の点(2) | Nomal線形代数」(0) | Nomal統計学の問題(0) | Nomal(削除)(3) | Nomal1/(z^2-1) を z = 1 でローラン展開する。(2) | Nomal無限等比級数について(2) | Nomalcosの不等式(2) | Nomal品質の服(0) | Nomal複素平面上の円(2) | Nomal積分の解き方について(0) | Nomal期待値(2) | Nomal3の個数(7) | Nomal複素数の関数(5) | Nomal分数関数の積分(2) |



■記事リスト / ▼下のスレッド
■48362 / 親記事)  複素数
□投稿者/ りょう 一般人(1回)-(2017/10/21(Sat) 11:43:53)
    次の条件をみたす複素数cは複素平面のどこにあるのでしょうか?
    [条件] 複素数zがz+1/z=cをみたすならば、|z|=1である
引用返信/返信 [メール受信/OFF]

▽[全レス3件(ResNo.1-3 表示)]
■48363 / ResNo.1)  Re[1]: 複素数
□投稿者/ らすかる 一般人(9回)-(2017/10/22(Sun) 01:54:38)
    z=r(cosθ+isinθ), c=a+biとおいて
    z+1/z=cに代入して整理すると
    (r+1/r)cosθ+(r-1/r)isinθ=a+bi
    ∴(r+1/r)cosθ=aかつ(r-1/r)sinθ=b
    (sinθ)^2+(cosθ)^2=1を使ってsinθ,cosθを消去すると
    {a/(r+1/r)}^2+{b/(r-1/r)}^2=1
    整理して
    r^8-(a^2+b^2)r^6+(2a^2-2b^2-2)r^4-(a^2+b^2)r^2+1=0 … (1)
    問題の条件を満たすためには、
    (1)の実数解が(あれば)r=±1のみでなければならない。
    (1)の左辺は
    (r^2-1)^2・(r^4-(a^2+b^2-2)r^2+1)-4b^2r^4
    と変形でき、b≠0ならばr=0のとき正、r=1のとき負となるので
    0<r<1である実数解を持つ。
    従って実数解がr=±1のみであるためにはb=0でなければならない。
    (1)でb=0として整理すると
    (r^2-1)^2・(r^4-(a^2-2)r^2+1)=0
    (r^2-1)^2=0の解はr=±1なので
    r^4-(a^2-2)r^2+1=0が実数解を持たないか、
    あるいは実数解を持つ場合はr=±1となればよい。
    実数解を持たない条件は
    x^2-(a^2-2)x+1=0が実数解を持たない
    → 判別式D=(a^2-2)^2-4<0 → -2<a<2かつa≠0
    または
    x^2-(a^2-2)x+1=0が負の実数解のみを持つ
    → 軸(a^2-2)/2<0かつ判別式≧0(かつy切片>0) → a=0
    実数解を持つ場合は
    r=±1を代入するとa=±2となり、
    逆にa=±2ならばr=±1なので a=±2
    これらをまとめると -2≦a≦2 となり、
    b=0なので、条件を満たす複素数cは
    -2≦c≦2を満たす実数。

    # もっと簡潔な導き方がありそうな気がします。
引用返信/返信 [メール受信/OFF]
■48367 / ResNo.2)  Re[2]: 複素数
□投稿者/ りょう 一般人(2回)-(2017/10/23(Mon) 11:27:27)
    有り難うございます!
解決済み!
引用返信/返信 [メール受信/OFF]
■48372 / ResNo.3)  Re[1]: 複素数
□投稿者/ Jouk 一般人(1回)-(2017/11/12(Sun) 22:32:03)
    {x+x/(x^2+y^2)==a,(y-y/(x^2+y^2))==b,x^2+y^2==1}
    を解いて c=a+b*i=2 Sqrt[1-y^2]+0*i or c=a+b*i=-2 Sqrt[1-y^2]+0*i

         より   c は -2\[LessFullEqual]c\[LessFullEqual]2を満たす実数。
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-3]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■48369 / 親記事)  2階導関数・第2次導関数
□投稿者/ 田中 一般人(1回)-(2017/10/31(Tue) 18:16:29)
    f(x)=&#179;√xとおく。k=1,2,3,4に対し、f(x)の第k階導関数f&#8317;k&#8318;(x)をそれぞれ求めよ。
    2階導関数・第2次導関数が分かる方教えてください。
引用返信/返信 [メール受信/OFF]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■48364 / 親記事)  微分
□投稿者/ ただ微分するだけだとは思いますが・・・ 一般人(1回)-(2017/10/22(Sun) 15:12:11)
http://ただ微分するだけだとは思いますが・・・
    4(x^3+y^3-1)+3(xy+1)^2=0

    y''+2xy'-y=0
    を満たしていることを確かめよ。

    教えて下さい。
    お願いします。
引用返信/返信 [メール受信/OFF]

▽[全レス1件(ResNo.1-1 表示)]
■48368 / ResNo.1)  Re[1]: 微分
□投稿者/ ただ微分するだけだとは思いますが・・・ 一般人(2回)-(2017/10/23(Mon) 23:28:57)
    やはり計算量が多く困難でしょうか?
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-1]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■48365 / 親記事)  数学では循環する定義・公理は許されていますか
□投稿者/ beginner 一般人(1回)-(2017/10/22(Sun) 20:54:58)
    ZFCなどの公理的集合論では公理は述語論理で書かれていますよね
    そして述語論理を構成するには真理値という真と偽の二要素からなる集合が必要なようです
    述語論理を構成するには集合論が必要で集合論を構成するには述語論理が必要で...と鶏と卵どっちが先かみたいな話にはならないのですか
    形式主義ではそのようなことが解決されるのですか
    やはり数学理論を構成するには数学から見て外側の言語(英語などの自然言語や人間の思考規則や文字)が必要なのでしょうか
引用返信/返信 [メール受信/OFF]

▽[全レス1件(ResNo.1-1 表示)]
■48366 / ResNo.1)  Re[1]: 数学では循環する定義・公理は許されていますか
□投稿者/ beginner 一般人(2回)-(2017/10/22(Sun) 21:02:33)
    ごめんなさいこの質問は既に答えがあったようです
解決済み!
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-1]



■記事リスト / ▲上のスレッド
■48357 / 親記事)  実数解の取り得る値の範囲
□投稿者/ 掛け流し 一般人(1回)-(2017/09/26(Tue) 23:50:06)
    「aを実数とする。
    xについての2次方程式
       x^2+2ax+3a^2−2a−4=0
    が実数解をもつとするとき、その実数解xの取り得る値の範囲を求めよ。」
    という問題に対して、

    「与えられた方程式をaに関する2次方程式とみて、それが実数解を持つための 
    xの条件として(判別式>=0)
    (−1−3√3)/2<=x=<(−1+3√3)/2
    としているのですが、どうしてこれで正しいのでしょうか?
    ご教授お願いします。
引用返信/返信 [メール受信/OFF]

▽[全レス2件(ResNo.1-2 表示)]
■48358 / ResNo.1)  Re[1]: 実数解の取り得る値の範囲
□投稿者/ らすかる 一般人(8回)-(2017/09/27(Wed) 00:46:58)
    xがその範囲内の値であれば、それに対応する実数aが存在するということは、
    そのaとxを元の方程式に代入すれば成り立つということですから、
    xがその値を取り得るということになります。
    逆に、xがその範囲外の場合は、aが実数解を持たないということですから
    元の式でaをどんな実数値にしてもxがその値をとらないということです。

引用返信/返信 [メール受信/OFF]
■48359 / ResNo.2)  Re[2]: 実数解の取り得る値の範囲
□投稿者/ 掛け流し 一般人(2回)-(2017/09/27(Wed) 18:21:55)
    らすかる様
    いつもありがとうございます。
    今回も、明快な解説ありがとうございます。
    よく理解しました。
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-2]






Mode/  Pass/

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

- Child Tree -
Edit By 数学ナビゲーター