数学ナビゲーター掲示板

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

■ 過去ログ検索の勧め⇒ここを読んでみてください
google検索

 
この掲示板の過去ログをgoogleで検索します。
検索条件:
現在のログを検索過去のログを検索
■ 2006/2/20より、累計:、本日:、昨日:
数式の記述方法
TeX入力ができます。 \[ TeX形式数式 \] あるいは,$ TeX形式数式 $ で数式を記述します。
 TeX形式数式には半角英数字のみです。詳しくは、ここを見てください。文字化けが発生したときはここを見てください。
■ 質問をする方は、回答者に失礼のないようにお願いします。
携帯電話でこの掲示板を見れるようにしました。⇒ここを見てください。
■ 24時間以内に作成されたスレッドは New で表示されます。
■ 24時間以内に更新されたスレッドは UpDate で表示されます。

記事リスト ( )内の数字はレス数
New二重積分について(0) | New原点を中心とする単位円上の複素数(0) | UpDate幾何学(1) | UpDate論理式(3) | NewQ=10√KL をグラフにする(0) | Nomal二次方程式(2) | Nomal積と和が一致する自然数の組(4) | Nomalグラムシュミット(0) | Nomal大学数学(1) | Nomal共分散行列(0) | Nomal大学数学(0) | Nomal素数(6) | Nomal確率 統計の問題(0) | Nomalフェルマの小定理(1) | Nomal大学線形(0) | Nomal大学線形(0) | Nomal大学数学 4次多項式 フェラーリの解法(1) | Nomal漸化式(1) | Nomal最大公約数(0) | Nomal和の求め方がわかりません。(3) | Nomal業界最も人気(0) | Nomalベイズ更新について(0) | Nomal無限積分(2) | Nomal三角関数の極限(1) | Nomal極限(3) | Nomal約数(2) | Nomal約数(2) | Nomal順列組合せ〜区別するものしないもの(6) | Nomal場合の数(2) | Nomal数的推理(2) | Nomal三角形の辺の長さ(6) | Nomal単位円と三角形(1) | Nomal1/xについて(2) | Nomal調べた確率がどれくらい信用できるかを求めたい(0) | Nomal命題の真偽(8) | Nomal期待値(13) | Nomal因数分解(2) | Nomal√の問題(2) | Nomal極形式(6) | Nomaltanと自然数(2) | Nomalα^52(2) | Nomal放物線の標準形(4) | Nomal循環小数(2) | Nomal四角形の辺の長さ(2) | Nomalコラッツ予想について(2) | Nomal三角形の角(3) | Nomal有理数と素数(1) | Nomal円と曲線(3) | Nomalフィボナッチ数列について。(0) | Nomal導関数の定義について(2) | Nomal楕円曲線(1) | Nomallog(1+x)<√x(4) | Nomal円と3次関数(4) | NomalΣと積分の交換(3) | Nomalcos(1)とtan(1/2)(2) | Nomal合成数(2) | Nomal積分について(2) | Nomal因数分解(4) | Nomal2次関数(1) | Nomal常用対数と桁数の関係(2) | Nomal(削除)(2) | Nomal行列を含む偏微分(0) | Nomalカタラン数(4) | Nomal無限級数(1) | Nomalスーパコピーvog.agvol.com/brand-70-c0.html ボーイロンドンブラドスパーピー(0) | Nomalかんたんなフェルマーの最終定理の証明(19) | Nomal写像の問題です。(0) | Nomal離散数学 有向グラフの問題(0) | Nomal原始関数問題(1) | Nomal三角形と円の関係について(0) | Nomal|e^(icosθ)|、|e^(isinθ)|について(2) | Nomal大学数学 重積分(0) | Nomal簡単な論理式〜変な質問ですみませんが・・・(2) | Nomal割り算(1) | Nomal確率の問題です。大至急お願い致します(0) | Nomal整数解(7) | Nomal全ての 整数解 等(4) | Nomal完璧なのコピーbuytowe(0) | Nomal素数(1) | Nomal指数計算の練習(2) | Nomal微分積分(0) | Nomalテイラー展開(0) | Nomal合同式(1) | Nomalエルミート行列(0) | Nomal【大学数学】貨幣需要関数(0) | Nomal陰関数(0) | Nomalフェルマーの最終定理の証明(6) | Nomal統計学(0) | Nomalベクトル空間(0) | Nomal複素数の三角不等式(引き算)(2) | Nomal微分の問題(0) | Nomal体積(1) | Nomalフェルマーの最終定理の証明(z=x+rとおく方法)(1) | Nomal微分可能(2) | Nomalチェビシェフ 偏差値(0) | Nomal線形代数(1) | Nomal複素積分(2) | Nomalテイラー展開(2) | Nomal線形変換(1) | Nomal大学数学 線形代数 部分空間の証明(0) |



■記事リスト / ▼下のスレッド
■47996 / 親記事)  数列の最大項
□投稿者/ まるでお城 一般人(1回)-(2017/05/26(Fri) 16:38:08)
    aを正の数として、数列a[n]を
    a[n]=(a/n)^n (n=1,2,3,...)
    と定めます。
    a[1],a[2],a[3],...,a[n],...
    のうち最大の項はどれですか?
引用返信/返信 [メール受信/OFF]

▽[全レス1件(ResNo.1-1 表示)]
■47997 / ResNo.1)  Re[1]: 数列の最大項
□投稿者/ WIZ 一般人(9回)-(2017/05/26(Fri) 20:09:22)
    logは自然対数関数を表すものとし、自然対数の底をeとします。

    xを実数として、f(x) = (a/x)^xとおいてx > 0でのf(x)の増減を調べます。
    f(x) > 0ですから、log(f(x)) = x(log(a)-log(x)),
    f'(x)/f(x) = log(a)-log(x)-1 = log(a/(ex)) ⇒ f'(x) = f(x)log(a/(ex))
    1 < a/(ex)つまりx < a/eで、f'(x) > 0なので、f(x)は増加。
    1 = a/(ex)つまりx = a/eで、f'(x) = 0なので、f(x)は極大。
    0 < a/(ex) < 1つまりa/e < xで、f'(x) < 0なので、f(x)は減少。

    よって、a/eに近い整数nでa[n]は最大になると考えられるので、
    n = [a/e]またはn = [a/e]+1のどちらかになると思います。
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-1]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■47985 / 親記事)  数列とmod
□投稿者/ トランク大統領 一般人(1回)-(2017/05/22(Mon) 00:03:38)
    a[1]=-4
    a[2]=8
    a[3]=420
    a[n+3]=3a[n+2]-99a[n+1]-31a[n] (n≧1)
    で定められる数列{a[n]}をmod 93で見ると、いずれも0にならない(93の倍数にならない)、
    という性質があります。

    この93という整数はどうやって見つけたらよいのでしょうか?
引用返信/返信 [メール受信/OFF]

▽[全レス2件(ResNo.1-2 表示)]
■47991 / ResNo.1)  Re[1]: 数列とmod
□投稿者/ らすかる 一般人(10回)-(2017/05/22(Mon) 19:52:37)
    別スレで書いた「条件を満たす自然数mは存在しない」の証明と同様に考えれば、
    31a[n]=-99a[n+1]+3a[n+2]-a[n+3]
    と変形したとき、mod mのmが31と互いに素であればある3項からその手前の項が
    一意的に決まり、a[0]=0なのでa[k]≡0(mod m)となる項が存在します。
    従ってa[k]≡0(mod m)となる項が存在しないためには、少なくとも
    mが31と互いに素でない、すなわち31の倍数である必要があります。
    よって31,62,93,…を考えればよいことになりますね。

引用返信/返信 [メール受信/OFF]
■47994 / ResNo.2)  Re[2]: 数列とmod
□投稿者/ トランク 一般人(9回)-(2017/05/22(Mon) 23:28:59)
    有り難うございます。

    これは問題集にあった問題なのですが、
    解けるように作ってあることがよく分かりました。
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-2]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■47982 / 親記事)  数列とmod
□投稿者/ トランク 一般人(1回)-(2017/05/21(Sun) 20:40:36)
    a[1]=1
    a[2]=-3
    a[3]=6
    a[n+3]=-3a[n+2]-3a[n+1]+a[n] (n≧1)
    で定められる数列{a[n]}について、次の条件をみたす自然数mは存在するでしょうか?

    条件 どの自然数nに対してもa[n]はmの倍数ではない
引用返信/返信 [メール受信/OFF]

▽[全レス7件(ResNo.3-7 表示)]
■47986 / ResNo.3)  Re[1]: 数列とmod
□投稿者/ らすかる 一般人(8回)-(2017/05/22(Mon) 01:08:33)
    全然答えにはなっていないですが、
    とりあえずm≦1000000では条件を満たすmは存在しませんでした。

引用返信/返信 [メール受信/OFF]
■47987 / ResNo.4)  Re[2]: 数列とmod
□投稿者/ トランク 一般人(3回)-(2017/05/22(Mon) 01:29:34)
    No47986に返信(らすかるさんの記事)
    > 全然答えにはなっていないですが、
    > とりあえずm≦1000000では条件を満たすmは存在しませんでした。
    >

    ひええぇぇ・・・
    この方針では無理そうですね
引用返信/返信 [メール受信/OFF]
■47989 / ResNo.5)  Re[2]: 数列とmod
□投稿者/ トランク 一般人(5回)-(2017/05/22(Mon) 03:25:21)
    でも、もし任意の自然数mに対して、ある自然数nが存在して
    a[n]はmの倍数
    となるのなら、それ自体でちょっと面白い問題ですね
    元の問題からは離れてしまいますが…
引用返信/返信 [メール受信/OFF]
■47990 / ResNo.6)  Re[1]: 数列とmod
□投稿者/ らすかる 一般人(9回)-(2017/05/22(Mon) 19:03:10)
    「条件を満たす自然数mは存在しない」が証明できました。

    mod mで考えた場合、連続する3項の数の組合せは
    有限通り(m^3通り)ですから、必ず一定の周期でループします。
    そしてa[n+3]=-3a[n+2]-3a[n+1]+a[n]を変形すると
    a[n]=3a[n+1]+3a[n+2]+a[n+3]となり、ある連続する3項から
    必ずその前の項も一意的に決まりますので、
    「先頭のk項(k>0)はループせず、k+1項めからループが始まる」
    ということはあり得ず、先頭からループが始まります。
    従ってa[k]≡a[1],a[k+1]≡a[2],a[k+3]≡a[3](mod m)となるkが
    必ず存在します。
    このとき、a[0]=3a[1]+3a[2]+a[3]=0からa[k-1]≡a[0]≡0(mod m)ですから、
    mの倍数である項a[k-1]が存在します。
    従って条件を満たす自然数mは存在しません。

引用返信/返信 [メール受信/OFF]
■47992 / ResNo.7)  Re[2]: 数列とmod
□投稿者/ トランク 一般人(6回)-(2017/05/22(Mon) 23:22:44)
    2017/05/22(Mon) 23:38:47 編集(投稿者)

    なるほど!
    a[n]の係数1がいやらしい、mが存在しない(≒元の問題が難しくなってる)原因なんですね。

    他の線型回帰数列でも(フィボナッチ数列とか)同様のことが言えるんですね。
    有り難うございます。(って、元の問題がますます手が届かなくなってるのではありますが…)
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-7]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■47988 / 親記事)  2^(1/3)-1
□投稿者/ トランク 一般人(4回)-(2017/05/22(Mon) 02:22:41)
    自然数nに対して整数a[n],b[n],c[n]を
    (2^(1/3)-1)^n=a[n]+b[n]2^(1/3)+c[n]4^(1/3)
    として定めます。

    「n≧2ならばc[n]≠0」
    って正しいでしょうか?

    正しいとすると証明はどうすればよいのでしょうか?

    (他の場所で見かけて)なぜか少し気になりまして…。
    よろしくお願いします。
引用返信/返信 [メール受信/OFF]



■記事リスト / ▲上のスレッド
■47964 / 親記事)  どう並べ替えても一部を取り出しても素数
□投稿者/ shtainze 一般人(1回)-(2017/05/12(Fri) 17:07:52)
    n進法におけるk桁 (k: 4以上) の数で、下記の条件を満たす例を挙げよ。あるいは、必要条件を挙げよ。
    ・各桁の数をどう並べ替えても素数になる
    ・一部の桁のみを取り出した数も、どう並べ替えても素数になる

    マルチ投稿ですが、毎日確認して、何か回答を頂き次第こちらの掲示板にも反映させます。また、ご回答が得られない期間が1週間続いた時点でフォローを止めさせて頂きます。その際はこちらにメッセージを残します。どうぞ宜しくお願い致します。
引用返信/返信 [メール受信/OFF]

▽[全レス5件(ResNo.1-5 表示)]
■47965 / ResNo.1)  Re[1]: どう並べ替えても一部を取り出しても素数
□投稿者/ shtainze 一般人(2回)-(2017/05/12(Fri) 17:08:50)
    No47964に返信(shtainzeさんの記事)
    なお、以下は私が考えて分かった範囲です。
    kが2の時は、例えば、10進法における37が当てはまります。(37, 73, 3, 7が全て素数)
    kが3の時は例えば、246進法に最小の例があり、その時の各桁の数は31, 101, 191となります。(3桁、2桁、1桁の組み合わせの合計15通りの数が全て素数となる)
    素数定理が正しいとすれば、どんなに大きなkに対しても、n進法においてそのような例が出現する確率は少なく見積もってもO (1/(lognの累乗))となります。これは十分大きなnに対して必ずそのような例が出現し、かつ以降も無限に出現することを示唆しています。

    ただし、その確率の絶対値はかなり小さいので、kが4の時は数値計算による求解は不可能であり、何らかの定性的な絞込が必要となります。

    他には各桁が素数となる事(1桁の場合を考えれば自明)と、あと、modを使って多少の絞り込みができる事が判明している程度です。

    ・この問題のために群論も少しかじりましたが、群論は「桁を並べ替える」とか「一部の桁を取り出す」等の操作に関してはあまりパワーを発揮しないようです。(←誤解があればご指摘下さい)
    ・permutable primeについても少し調べましたが、今回はそれよりかなり強い条件を要請しているのであまり役立たない気がします。

引用返信/返信 [メール受信/OFF]
■47968 / ResNo.2)  Re[1]: どう並べ替えても一部を取り出しても素数
□投稿者/ WIZ 一般人(5回)-(2017/05/14(Sun) 18:07:01)
    2017/05/14(Sun) 22:48:25 編集(投稿者)

    # 回答でも関連情報でもなく、ただの感想文ですのでご了承ください。

    スレ主さんは何進法かということに拘っているようですが、
    何進法かということは自然数の位取り表記法の都合であり、その自然数の値とは無関係です。
    この質問の件は以下の様に、何進法かに無関係な問題に定式化でます。

    kを4以上の自然数としてk個の素数p[1], p[2], ・・・, p[k]と、1より大きい自然数nがある。
    但し、各素数の値はn未満とする。このときnのk-1次以下の整式で、
    係数はp[1], p[2], ・・・, p[k]のどれかとする時の値が常に素数となるように、
    p[1], p[2], ・・・, p[k]を選ぶことができるか?

    p[1], p[2], ・・・, p[k]の中に同一の素数は存在しません。
    何故なら、p[1] = p[2]とするとp[1]*n+p[2] = p[1](n+1)と合成数になってしまうからです。

    n進法という考えだと、1進法というのは存在しないのでn > 1となってしまいますが、
    私が定式化した記述ならn = 1の場合も考えてみても面白いかもしれませんね。
    p[a]*n+p[b]とp[b]*n+p[a]は、n > 1なら違う値でしょうが、n = 1なら同じ値になりますけどね。

    また、n進位取り記数法だから、p[1]〜p[k]はn未満の値である必要がありますが、
    このn未満という条件を取り去った問題を考えてみても面白いかもしれません。
引用返信/返信 [メール受信/OFF]
■47971 / ResNo.3)  Re[2]: どう並べ替えても一部を取り出しても素数
□投稿者/ shtainze 一般人(3回)-(2017/05/14(Sun) 21:39:33)
    No47968に返信(WIZさんの記事)
    > この質問の件は以下の様に、何進法かに無関係な問題に定式化でます。
    →いかにもその通りです。私が進法にこだわったのは、プログラミングによって候補を探していた時の名残です。
    p1 < p2 < p3 < p4 < nを守る事にすると、nを中心にしてアルゴリズムを組むのが最も理にかなう方法になるのです。 (n = 2kに対してnより小さいp1, p2, p3, p4を列挙して多項式が素数になるかサーチ、次に同じことをn = 2k+2に対して行い、同様にn = 2k+4, 2k+6,,, とだんだん増やしていく)

    > また、n進位取り記数法だから、p[1]〜p[k]はn未満の値である必要がありますが、
    > このn未満という条件を取り去った問題を考えてみても面白いかもしれません。
    おっしゃる通りp1, p2, p3,,, < nは一般化すれば外しても良いですね。外さなかったのは私がこの問題を思いついた由来によります。
    Wikipediaの様々な素数の記載を見ていた時に、
    ・circular prime (お尻のケタを頭にもってくる事を繰り返しても全て素数)
    ・truncatable prime (端っこからケタを切り落としていっても全て素数)
    ・permutable prime (どう並べ替えても素数)
    などなどの数遊びがあったのですが、「では最も一般化した形態はなんだろう?」と考えた所、この形態を思いついたというわけです。ということで位取り記数法にこだわっています。
    また、上記のプログラミングによるサーチとも関連しますが、この制限を外すと一気にプログラミングが困難になってきます (n, p1, p2, p3, p4のうち少なくとも2つが大小関係なく大きくなれるため、サーチの方向が決めにくい)。


    さて、見つかるもんでしょうかね・・・

    ># 回答でも関連情報でもなく、ただの感想文ですのでご了承ください。
    →正解があるとしても求めるのは非常に困難な事が予想されます。なにしろ、4ケタ: 24通り、3ケタ: 24通り、2ケタ: 12通り、4ケタ: 4通り、の合計64個の数が全て同時に素数にならないといけないので、それだけでも極めて低い確率であることは明らかですね。
    にも関わらず、素数定理 (nが素数である確率はザックリと1/Log (n) ) を用いてそのような確率を求めると、チリも積もれば山となり、10^90進法程度までサーチすれば必ず1つは存在する事が示唆されるということで、中々奥深いですね。

引用返信/返信 [メール受信/OFF]
■47972 / ResNo.4)  Re[2]: どう並べ替えても一部を取り出しても素数
□投稿者/ shtainze 一般人(4回)-(2017/05/14(Sun) 21:40:28)
    いずれにしても、返信を下さり本当にありがとうございます。私の趣味にお付き合いいただけてとても嬉しいです。
引用返信/返信 [メール受信/OFF]
■47981 / ResNo.5)  Re[3]: どう並べ替えても一部を取り出しても素数
□投稿者/ shtainze 一般人(5回)-(2017/05/21(Sun) 09:14:08)
    1週間経ちましたがご回答が得られないので終了とさせて頂きます。(難しいですよね・・・)
    またお世話になることがあるかもしれませんが宜しくお願い致します。
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-5]






Mode/  Pass/

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

- Child Tree -
Edit By 数学ナビゲーター