数学ナビゲーター掲示板

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

■ 過去ログ検索の勧め⇒ここを読んでみてください
google検索

 
この掲示板の過去ログをgoogleで検索します。
検索条件:
現在のログを検索過去のログを検索
■ 2006/2/20より、累計:、本日:、昨日:
数式の記述方法
TeX入力ができます。 \[ TeX形式数式 \] あるいは,$ TeX形式数式 $ で数式を記述します。
 TeX形式数式には半角英数字のみです。詳しくは、ここを見てください。文字化けが発生したときはここを見てください。
■ 質問をする方は、回答者に失礼のないようにお願いします。
携帯電話でこの掲示板を見れるようにしました。⇒ここを見てください。
■ 24時間以内に作成されたスレッドは New で表示されます。
■ 24時間以内に更新されたスレッドは UpDate で表示されます。

記事リスト ( )内の数字はレス数
Nomal場合の数(2) | Nomal数的推理(2) | Nomal三角形の辺の長さ(6) | Nomal単位円と三角形(1) | Nomal1/xについて(2) | Nomal調べた確率がどれくらい信用できるかを求めたい(0) | Nomal命題の真偽(8) | Nomal期待値(13) | Nomal因数分解(2) | Nomal√の問題(2) | Nomal極形式(6) | Nomaltanと自然数(2) | Nomalα^52(2) | Nomal放物線の標準形(4) | Nomal循環小数(2) | Nomal四角形の辺の長さ(2) | Nomalコラッツ予想について(2) | Nomal三角形の角(3) | Nomal有理数と素数(1) | Nomal円と曲線(3) | Nomalフィボナッチ数列について。(0) | Nomal導関数の定義について(2) | Nomal楕円曲線(1) | Nomallog(1+x)<√x(4) | Nomal円と3次関数(4) | NomalΣと積分の交換(3) | Nomalcos(1)とtan(1/2)(2) | Nomal合成数(2) | Nomal積分について(2) | Nomal因数分解(4) | Nomal2次関数(1) | Nomal常用対数と桁数の関係(2) | Nomal(削除)(2) | Nomal行列を含む偏微分(0) | Nomalカタラン数(4) | Nomal無限級数(1) | Nomalスーパコピーvog.agvol.com/brand-70-c0.html ボーイロンドンブラドスパーピー(0) | Nomal大学数学 4次多項式 フェラーリの解法(0) | Nomalかんたんなフェルマーの最終定理の証明(19) | Nomal写像の問題です。(0) | Nomal離散数学 有向グラフの問題(0) | Nomal原始関数問題(1) | Nomal三角形と円の関係について(0) | Nomal|e^(icosθ)|、|e^(isinθ)|について(2) | Nomal大学数学 重積分(0) | Nomal簡単な論理式〜変な質問ですみませんが・・・(2) | Nomal割り算(1) | Nomal確率の問題です。大至急お願い致します(0) | Nomal整数解(7) | Nomal全ての 整数解 等(4) | Nomal完璧なのコピーbuytowe(0) | Nomal素数(1) | Nomal指数計算の練習(2) | Nomal微分積分(0) | Nomalテイラー展開(0) | Nomal合同式(1) | Nomalエルミート行列(0) | Nomal【大学数学】貨幣需要関数(0) | Nomal陰関数(0) | Nomalフェルマーの最終定理の証明(6) | Nomal統計学(0) | Nomalベクトル空間(0) | Nomal複素数の三角不等式(引き算)(2) | Nomal微分の問題(0) | Nomal体積(1) | Nomalフェルマーの最終定理の証明(z=x+rとおく方法)(1) | Nomal微分可能(2) | Nomalチェビシェフ 偏差値(0) | Nomal線形代数(1) | Nomal複素積分(2) | Nomalテイラー展開(2) | Nomal線形変換(1) | Nomal大学数学 線形代数 部分空間の証明(0) | Nomal証明問題(1) | Nomal一次結合と一次独立(0) | Nomal証明問題です(0) | Nomalz^5 = -1 を解く(2) | Nomal空間上の点(2) | Nomal複素関数の部分分数分解(4) | Nomal熱力学の本に出てくる式変形がわかりません。(0) | Nomalピタゴラス数の求め方(0) | Nomal二項定理を使ったピタゴラスの定理の証明(0) | Nomal二項定理を使ったフェルマーの最終定理の証明(0) | Nomal2次方程式(3) | Nomal数学A 図形の計算(0) | Nomalある式の微分における式変形について(2) | Nomal3次元空間の点(2) | Nomal線形代数」(0) | Nomal統計学の問題(0) | Nomal(削除)(3) | Nomal1/(z^2-1) を z = 1 でローラン展開する。(2) | Nomal無限等比級数について(2) | Nomalcosの不等式(2) | Nomal品質の服(0) | Nomal複素平面上の円(2) | Nomal積分の解き方について(0) | Nomal期待値(2) | Nomal3の個数(7) | Nomal複素数の関数(5) | Nomal分数関数の積分(2) |



■記事リスト / ▼下のスレッド
■48900 / 親記事)  たけしのコマ大数学科の問題・・・
□投稿者/ 数学科非常勤講師 一般人(1回)-(2018/11/20(Tue) 23:28:07)
    もし過去レスにあればすみません・・・。
    はるか昔に「たけしのコマ大数学科」という番組で放送されていた問題で,確かテーマは「角度」だったかと思います。その問題とは・・・

    「最小の内角が120°の多角形がある。それに続く内角がその前の角より5°ずつ大きい多角形を作るとき、その図形は何角形になるか?」

    という問題でした。

    求める多角形をn角形とすると,多角形の内角の和の公式,等差数列の和の公式を用いて方程式を立て,解を求めると,n=9,16となりますが,問題の答えは「九角形と十五角形」となります。十五角形となる理由は,5°ずつ角度が増えていくなかで,175°→180°→185°となる部分が直線になり,角度ができないということでした。
    しかし,よくよく考えると180°の部分が直線になるということは,題意にある「5°ずつ大きくなる」という条件を満たしておらず,十五角形はこの問題の答えから除外すべきということになるのではないかと思いました。
    この問題は「中村亨」先生という方がご担当されていた問題で,TVで放映されるくらいなのできちんと精査され,題意を満たさないような問題ではないのではないか?という疑問も残るところであります。

    そこで,詳しい方々の意見を頂戴したく,今回数年ぶりにレスさせて頂きました。
    たくさんの方からの見解をお聞かせ頂けたらと思います。
    よろしくお願いします。
引用返信/返信 [メール受信/OFF]

▽[全レス3件(ResNo.1-3 表示)]
■48901 / ResNo.1)  Re[1]: たけしのコマ大数学科の問題・・・
□投稿者/ らすかる 一般人(35回)-(2018/11/21(Wed) 01:29:08)
    私は「十五角形はこの問題の答えから除外すべき」だと思います。
    175°に続く内角は185°であり、10°大きいですから
    条件を満たしません。
    (辺の途中に頂点はありませんので、「内角」はありません。)
    従って答えは九角形だけだと思います。

    # もし辺の途中の180°を「内角」と言うのであれば、
    # 辺の途中に頂点があると考えているわけですから
    # 辺(頂点)は16個で16角形となるはずであり、
    # 15角形ならば「180°」を「内角」と数えていませんので
    # 「5°ずつ大きい」という条件を満たしません。
    # よって、「16角形」を答えに入れるのはまだ理解できますが、
    # 「15角形」はどう考えても矛盾しています。
引用返信/返信 [メール受信/OFF]
■48903 / ResNo.2)  Re[1]: たけしのコマ大数学科の問題・・・
□投稿者/ 数楽者 一般人(1回)-(2018/11/21(Wed) 15:50:41)
    七角形と九角形が答えだと思います。

    『120度から5度ずつ増やしていく際に、1方向だけでなく両方向へ増やしていってもいい』
    とも解釈できるので
    135,130,125,120,125,130,135で
    七角形も正しい答えだと思います。
    (問題文は曖昧なので、上の解釈を許してしまっていると思います。)

    15角形を除外する理由はらすかるさんと同じです。
引用返信/返信 [メール受信/OFF]
■48909 / ResNo.3)  Re[2]: たけしのコマ大数学科の問題・・・
□投稿者/ 数学科非常勤講師 一般人(3回)-(2018/11/25(Sun) 22:36:39)
    返事が遅くなり申し訳ございませんでした・・・。m(_ _)m

    らすかるさん, 数楽者さん,ご回答ありがとうございます。

    やはり十五角形を答から除外しないと題意に対して矛盾が生じますよね・・・。(^_^:

    また, 数楽者さんがおっしゃるように,この問題の文言だと「120度から5度ずつ増やしていく際に,1方向だけでなく両方向へ増やしていってもいい」という解釈も納得です。

    ということは,今回の問題の答は「七角形と九角形」というのがもっともしっくりとくる解答ということでしょうか!?

    今回は本当に久しぶりにこの掲示板を訪れ質問させて頂きましたが,変わらず説得力のある回答に感謝しています!!
    らすかるさんにつきましては,その昔にも大変お世話になったことを今でも覚えております!どんな問題でも回答することができ,一体どのような方なのかと昔から想像を膨らませております!!(^^;

    この度は本当にご回答ありがとうございました。
    また行き詰ったらこちらに伺わせていただきます。
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-3]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■48904 / 親記事)  数列
□投稿者/ ホグワーツ魔法学校 一般人(1回)-(2018/11/21(Wed) 16:31:24)
    次の漸化式で定まる数列 が単調減少であることの証明を教えて下さい。




    お願いします。
引用返信/返信 [メール受信/OFF]

▽[全レス2件(ResNo.1-2 表示)]
■48906 / ResNo.1)  Re[1]: 数列
□投稿者/ らすかる 一般人(36回)-(2018/11/21(Wed) 17:28:50)
    条件からa[n]は正なので
    (n-1)a[n]≧0
    (n-1)a[n]+1/(2^n)>0
    (2n-1)a[n]+1/(2^n)>na[n]
    {(2n-1)/(2n)}a[n]+1/{n・2^(n+1)}>a[n]/2
    左辺はa[n+1]に等しいのでa[n+1]>a[n]/2
    a[1]>1/2なのでa[n]>1/(2^n)
    (2^n)a[n]>1
    (2^n)a[n]-1>0
    -(2^n)a[n]+1<0

    a[n+1]={(2n-1)/(2n)}a[n]+1/{n・2^(n+1)}
    a[n+1]=a[n]-{1/(2n)}a[n]+1/{n・2^(n+1)}
    a[n+1]-a[n]=-{1/(2n)}a[n]+1/{n・2^(n+1)}
    a[n+1]-a[n]={-(2^n)a[n]+1}/{n・2^(n+1)}<0
    従って単調減少。

引用返信/返信 [メール受信/OFF]
■48907 / ResNo.2)  Re[2]: 数列
□投稿者/ ホグワーツ魔法学校 一般人(2回)-(2018/11/22(Thu) 13:54:35)
    有り難うございました。
    とても分かりやすいです。
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-2]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■48893 / 親記事)  整数の個数と極限
□投稿者/ ボンボニエール 一般人(1回)-(2018/11/17(Sat) 19:08:40)
    nを自然数とする。整数kに関する次の条件(C),(D)を考える。
    (C) 0≦k<n 
    (D) k/n≦1/m<(k+1)/n を満たす自然数mが存在する。
    条件(C),(D)をどちらも満たす整数kの個数をT[n]とする。
    lim[n→∞](log(T[n]))/(log(n))
    を求めよ。

    この問題を教えて下さい。
    よろしくお願いします。
引用返信/返信 [メール受信/OFF]

▽[全レス5件(ResNo.1-5 表示)]
■48896 / ResNo.1)  Re[1]: 整数の個数と極限
□投稿者/ muturajcp 一般人(15回)-(2018/11/18(Sun) 21:25:42)
    nを自然数とする。整数kに関する次の条件(C),(D)を考える。
    (C) 0≦k<n 
    (D) k/n≦1/m<(k+1)/n を満たす自然数mが存在する。
    条件(C),(D)をどちらも満たす整数kの個数をT[n]とする。
    k<nだから
    k+1≦nだから
    k/n≦1/m<(k+1)/n≦1だから
    k/n≦1/m<1となる最大の1/mは1/2だから
    T[n]は
    k/n≦1/2となるkの個数となる
    k/n≦1/2となるkの最大値は
    k≦n/2となるkの最大値で
    n/2の整数部[n/2]=int[n/2]だから
    T[n]=[n/2]+1
    [n/2]≦n/2<[n/2]+1
    n/2<[n/2]+1≦n/2+1=(n+2)/2
    n/2<T[n]≦(n+2)/2
    (log(n/2))/(log(n))≦(log(T[n]))/(log(n))≦(log((n+2)/2))/(log(n))
    {log(n)-log(2)}/(log(n))≦(log(T[n]))/(log(n))≦{log(n)+log(1+2/n)-log(2)}/log(n)
    1-log(2)/log(n)≦(log(T[n]))/(log(n))≦1+{log(1+2/n)-log(2)}/log(n)
    lim[n→∞]1-log(2)/log(n)≦lim[n→∞](log(T[n]))/(log(n))≦lim[n→∞]1+{log(1+2/n)-log(2)}/log(n)
    1≦lim[n→∞](log(T[n]))/(log(n))≦1

    lim[n→∞](log(T[n]))/(log(n))=1

引用返信/返信 [メール受信/OFF]
■48897 / ResNo.2)  Re[1]: 整数の個数と極限
□投稿者/ らすかる 一般人(33回)-(2018/11/18(Sun) 22:25:44)
    (D)を逆数にするとn/(k+1)<m≦n/k
    k≦√(n+1/4)-1/2のときn/k-n/(k+1)≧1だから
    k≦√(n+1/4)-1/2を満たすkに対してはmが必ず存在し、
    これは[√(n+1/4)-1/2]+1個ある(+1はk=0の分)。
    k>√(n+1/4)-1/2で存在するmは[n/{√(n+1/4)-1/2}]-a個
    (aは√(n+1/4)-1/2が整数のとき1、そうでないとき2)
    なので、T[n]=[√(n+1/4)-1/2]+1+[n/{√(n+1/4)-1/2}]-a
    √n-2<[√(n+1/4)-1/2]<√n
    √n-1<[n/{√(n+1/4)-1/2}]<√n+1
    なので2√n-4<T[n]<2√n+1
    従って
    lim[n→∞]log(2√n-4)/log(n)≦lim[n→∞]log(T[n])/log(n)≦lim[n→∞]log(2√n+1)/log(n)
    から
    lim[n→∞]log(T[n])/log(n)=1/2

引用返信/返信 [メール受信/OFF]
■48898 / ResNo.3)  Re[2]: 整数の個数と極限
□投稿者/ muturajcp 一般人(16回)-(2018/11/19(Mon) 19:29:13)
    求めるのはmの個数ではなく
    kの個数です
引用返信/返信 [メール受信/OFF]
■48899 / ResNo.4)  Re[3]: 整数の個数と極限
□投稿者/ らすかる 一般人(34回)-(2018/11/19(Mon) 21:19:36)
    > 求めるのはmの個数ではなくkの個数です
    私はkの個数を求めています。
    mの個数は無限個なので意味がないですね。

    例えばn=10000のとき
    m=2のときk=5000は条件を満たす
    m=3のときk=3333は条件を満たす
    m=4のときk=2500は条件を満たす
    ・・・
    m=100のときk=100は条件を満たす
    となり、k≧100で条件を満たすkは99個です。
    (2≦m≦100に対して、条件を満たすkは重複しません。)
    # m≦100では「条件を満たすmの個数」=「条件を満たすkの個数」なので
    # その部分から「mの個数を求めている」と感じられたのでしょうか。

    そしてk<100に対しては必ず条件を満たすmが存在しますので、
    k<100で条件を満たすのはk=0〜99の100個です。
    従ってn=10000のときはT[n]=99+100=199となります。
    この例のように、nが大きい時、T[n]は約2√nになりますので、
    求める極限値は1/2となります。

    上の解答は、この例をもう少し厳密に書いたものです。

引用返信/返信 [メール受信/OFF]
■48902 / ResNo.5)  Re[4]: 整数の個数と極限
□投稿者/ ボンボニエール 一般人(2回)-(2018/11/21(Wed) 11:01:19)
    1/2ですね。
    具体例も解説していただき大変理解が深まりました。
    ありがとうございました。
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-5]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■48889 / 親記事)  数列
□投稿者/ いらが 一般人(1回)-(2018/11/14(Wed) 11:54:47)
    数列a[n](n=1,2,3,...)を
    a[n]=n!*(Σ[k=n+1,∞]1/k!)
    と定めると、
    a[n]>a[n+1] (n=1,2,3,...)
    であることの証明を
    教えて下さい。
    お願いします。
引用返信/返信 [メール受信/OFF]

▽[全レス2件(ResNo.1-2 表示)]
■48890 / ResNo.1)  Re[1]: 数列
□投稿者/ らすかる 一般人(32回)-(2018/11/14(Wed) 15:49:21)
    a[n]-a[n+1]
    ={n!Σ[k=n+1〜∞]1/k!}-{(n+1)!Σ[k=n+2〜∞]1/k!}
    =n!{{Σ[k=n+1〜∞]1/k!}-{(n+1)Σ[k=n+2〜∞]1/k!}}
    =n!{{Σ[k=n+1〜∞]1/k!}-{Σ[k=n+2〜∞]1/k!}-n{Σ[k=n+2〜∞]1/k!}}
    =n!{1/(n+1)!-n{Σ[k=n+2〜∞]1/k!}}
    >n!{1/(n+1)!-n{Σ[k=1〜∞]1/{(n+1)!(n+2)^k}}}
    ={n!/(n+1)!}{1-n{Σ[k=1〜∞]1/(n+2)^k}}
    ={1/(n+1)}{1-n/(n+1)}
    ={1/(n+1)}{1/(n+1)}
    =1/(n+1)^2
    >0
    なので
    a[n]>a[n+1]

引用返信/返信 [メール受信/OFF]
■48892 / ResNo.2)  Re[2]: 数列
□投稿者/ いらが 一般人(2回)-(2018/11/15(Thu) 10:23:52)
    有り難うございます。
    大変助かりました。
解決済み!
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-2]



■記事リスト / ▲上のスレッド
■48850 / 親記事)  極限
□投稿者/ 三角関数 一般人(1回)-(2018/10/01(Mon) 09:52:00)
    x,y,zは0≦x,y,z<2πをみたす実数で、さらに
    数列{cosnx+cosny+cosnz}と{sinnx+sinny+sinnz}が
    n→∞でどちらも収束するという。x,y,zを求めよ。

    教えて下さい。
    お願いします。
引用返信/返信 [メール受信/OFF]

▽[全レス6件(ResNo.2-6 表示)]
■48878 / ResNo.2)  Re[2]: 極限
□投稿者/ 三角関数 一般人(2回)-(2018/10/30(Tue) 09:24:52)
    どういうことでしょうか?
引用返信/返信 [メール受信/OFF]
■48880 / ResNo.3)  Re[3]: 極限
□投稿者/ muturajcp 一般人(7回)-(2018/10/30(Tue) 21:11:25)
    x=0
    y=0
    z=0
    とすると
    lim_{n→∞}cos(nx)+cos(ny)+cos(nz)=cos(0)+cos(0)+cos(0)=1+1+1=3
    cosnx+cosny+cosnzは3に収束する
    lim_{n→∞}sin(nx)+sin(ny)+sin(nz)=sin(0)+sin(0)+sin(0)=0+0+0=0
    sinnx+sinny+sinnzは0に収束する

    x=0
    y=0
    z=0


引用返信/返信 [メール受信/OFF]
■48882 / ResNo.4)  Re[4]: 極限
□投稿者/ 三角関数 一般人(3回)-(2018/11/01(Thu) 10:23:32)
    cos(nx)+cos(ny)+cos(nz)、
    sin(nx)+sin(ny)+sin(nz)
    が収束するならば、
    x=y=z=0である

    ことを示していただけませんか?
引用返信/返信 [メール受信/OFF]
■48883 / ResNo.5)  Re[1]: 極限
□投稿者/ らすかる 一般人(31回)-(2018/11/01(Thu) 18:15:09)
    x,y,zがどんな値であっても、
    nを適当に定めればcos(nx)+cos(ny)+cos(nz)を
    いくらでも3に近くすることができるから、
    cos(nx)+cos(ny)+cos(nz)はnによらず3でなければならない。
    よってx=y=z=0。

引用返信/返信 [メール受信/OFF]
■48887 / ResNo.6)  Re[1]: 極限
□投稿者/ muturajcp 一般人(13回)-(2018/11/10(Sat) 20:36:41)
    x/(2π),y/(2π),z/(2π)が有理数の時
    0≦x/(2π)<1
    0≦y/(2π)<1
    0≦z/(2π)<1

    Q=(全有理数)
    Z=(全整数)
    N=(全自然数)
    f(n)=cos(nx)+cos(ny)+cos(nz)
    lim_{n→∞}f(n)=α
    {x/(2π),y/(2π),z/(2π)}⊂Q
    とすると
    x/(2π)=u/a
    y/(2π)=v/b
    z/(2π)=w/c
    {a,b,c}⊂N
    {u,v,w}⊂Z
    となるa,b,c,u,v,wがある
    ax=2uπ
    by=2vπ
    cz=2wπ
    だから
    n∈Nに対して
    k(n)=abcn
    とすると
    lim_{n→∞}f(k(n))
    =lim_{n→∞}cos(k(n)x)+cos(k(n)y)+cos(k(n)z)
    =lim_{n→∞}cos(abcnx)+cos(abcny)+cos(abcnz)
    =lim_{n→∞}cos(2bcnuπ)+cos(2acnvπ)+cos(2abnwπ)
    =3
    {f(k(n))}は{f(n)}の部分列だから
    部分列{f(k(n))}が3に収束するのだから
    {f(n)}も3に収束しなければならないから
    α=3
    lim_{n→∞}cos(nx)+cos(ny)+cos(nz)=3

    n∈Nに対して
    m(n)=abcn+1
    とすると
    lim_{n→∞}f(m(n))
    =lim_{n→∞}cos(m(n)x)+cos(m(n)y)+cos(m(n)z)
    =lim_{n→∞}cos((abcn+1)x)+cos((abcn+1)y)+cos((abcn+1)z)
    =lim_{n→∞}cos(2bcnuπ+x)+cos(2acnvπ+y)+cos(2abnwπ+z)
    =cos(x)+cos(y)+cos(z)
    ↓{f(m(n))}は{f(n)}の部分列だから
    ↓{f(n))}が3に収束するのだから
    ↓{f(m(n))}も3に収束しなければならないから
    =3

    cos(x)+cos(y)+cos(z)=3
    ↓cos(x)≦1,cos(y)≦1,cos(z)≦1だから
    cos(x)=1,cos(y)=1,cos(z)=1
    ↓0≦x<2π,0≦y<2π,0≦z<2πだから
    x=y=z=0
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-6]






Mode/  Pass/

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

- Child Tree -
Edit By 数学ナビゲーター