数学ナビゲーター掲示板

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

■ 過去ログ検索の勧め⇒ここを読んでみてください
google検索

 
この掲示板の過去ログをgoogleで検索します。
検索条件:
現在のログを検索過去のログを検索
■ 2006/2/20より、累計:、本日:、昨日:
数式の記述方法
TeX入力ができます。 \[ TeX形式数式 \] あるいは,$ TeX形式数式 $ で数式を記述します。
 TeX形式数式には半角英数字のみです。詳しくは、ここを見てください。文字化けが発生したときはここを見てください。
■ 質問をする方は、回答者に失礼のないようにお願いします。
携帯電話でこの掲示板を見れるようにしました。⇒ここを見てください。
■ 24時間以内に作成されたスレッドは New で表示されます。
■ 24時間以内に更新されたスレッドは UpDate で表示されます。

記事リスト ( )内の数字はレス数
Nomalプログラミング言語BASIC言語について。(14) | Nomal統計/区画幅について(3) | Nomal2変数関数の極値条件(2) | Nomal素数生成法について(0) | Nomalsupreme 偽物(0) | Nomal合同式の計算(4) | Nomal縦曲線について(0) | Nomal銃曲線における計画高ついて(0) | Nomal測量学について(0) | Nomal訂正です(1) | Nomal対数の取り方、シグモイド、ロジスティック関数(0) | Nomal緩和曲線の開始位置と終了地点および途中の高さxについて(0) | Nomalf'(x) の増減の判定方法(3) | Nomal三角形と内接円について改(1) | Nomal三角形と内接円について。(1) | Nomal増減表の作り方(6) | Nomal4次関数(3) | Nomal約数を mod 13 で見る(1) | Nomal三葉曲線の長さについて(2) | Nomal自作問題(3) | Nomalフェルマーの最終定理の簡単な証明9(23) | Nomal(削除)(0) | Nomalケプラー方程式による惑星の会合計算(0) | Nomal追いかけ算 惑星会合時期(1) | Nomal担当者の時間割(2) | Nomal三次関数と長方形(4) | Nomal(削除)(0) | Nomal屑スレを下げるための問題(2) | Nomal3次関数について。(8) | Nomal必要十分条件の証明(3) | Nomalフェルマーの最終定理の簡単な証明8(74) | Nomal合コン(4) | Nomal基本的な確率(2) | Nomal同型写像(0) | Nomal正2n角形と確率(4) | Nomal中学生でも解けそうな入試問題001(1) | Nomalご教示ください(5) | Nomal階段行列の作り方(4) | Nomal統計学の問題です(0) | Nomal3の倍数(4) | Nomalラプラス方程式 境界条件(0) | Nomal対偶について(8) | Nomal偶数と奇数(8) | Nomalsinの関係(2) | Nomal2^(1/3)とωと√3(4) | Nomal supreme コート(0) | Nomalフェルマーの最終定理の簡単な証明7(101) | Nomal目的の形への行列の三角化(2) | Nomal(削除)(2) | Nomal等角写像の問題です。(2) | Nomal掲示板について。(1) | Nomalフェルマーの定理 RSA暗号(1) | Nomalフェルマーの最終定理の簡単な証明6(101) | Nomalオイラーの公式(3) | Nomalグッチンコピー(0) | Nomal6次方程式(2) | Nomalベクトル解析 証明(0) | Nomal位相数学、位相空間(0) | Nomal実生活に活きる確率(0) | Nomalオイラーの公式 導関数の定義(2) | Nomalオイラーの公式(3) | Nomal2階常微分方程式 (1) | Nomalオイラーの公式(0) | Nomalフェルマーの最終定理の簡単な証明5(101) | Nomal数学について。(1) | Nomal順列(4) | Nomal線形代数(1) | Nomal整数問題(1) | Nomalフェルマーの最終定理の簡単な証明4(101) | Nomal大小の比較(7) | Nomalシミュレーションについて(1) | Nomal期待値(2) | Nomal数学について。(1) | Nomalフーリエ変換の求め方(1) | Nomalisometric matrix,p-ノルムについて(0) | Nomalフェルマーの最終定理の簡単な証明3(76) | Nomald(cos^2θ)/dθ=と置けるような相似の図を見つけたいです!(0) | Nomal1/ cos^2θの微分を画像の図を用いて解きたい!(0) | Nomalラグランジュの剰余項(1) | Nomallog2とマクローリン展開についての証明(1) | Nomal極限を求める(大学数学)(1) | Nomal三角方程式(2) | Nomal確率密度(2) | Nomal方程式(2) | Nomal多項式の係数(1) | Nomalフェルマーの最終定理の簡単な証明2(101) | Nomal複素平面上の領域について(0) | Nomal数学検定について。(0) | Nomal複素解析(2) | Nomal定積分と体積(1) | Nomal極限値(3) | Nomal複素解析(7) | Nomalフェルマーの最終定理の簡単な証明(101) | Nomal高校推論の問題(1) | Nomal漸化式の項を減らす(4) | Nomalカーリングの7試合とは(4) | Nomal(削除)(3) | Nomalたぶん三角関数の等式(6) | Nomal確率、期待値の計算(0) | Nomal数学オリンピックの幾何の問題(2) |



■記事リスト / ▼下のスレッド
■47511 / 親記事)  極座標表示の連立方程式
□投稿者/ ライカー 一般人(1回)-(2015/10/07(Wed) 21:20:46)
    下記の極座標表示(r,θ)の連立方程式の解き方がわかりません。
    アドバイスをお願いします。

     rcos(θ−(π/2))=2a

     rcos(θ-(π/6))=a

    上記の交点の極座標を求めたいのですが。
引用返信/返信 [メール受信/OFF]

▽[全レス1件(ResNo.1-1 表示)]
■47514 / ResNo.1)  Re[1]: 極座標表示の連立方程式
□投稿者/ ライカー 一般人(2回)-(2015/10/09(Fri) 20:37:38)
    No47511に返信(ライカーさんの記事)
    > 下記の極座標表示(r,θ)の連立方程式の解き方がわかりません。
    > アドバイスをお願いします。
    >
    >  rcos(θ−(π/2))=2a
    >
    >  rcos(θ-(π/6))=a
    >
    > 上記の交点の極座標を求めたいのですが。


    わかりました。

引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-1]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■47509 / 親記事)  
□投稿者/ tri 一般人(1回)-(2015/10/05(Mon) 02:11:19)
    (-99 + 2 x - 101 x^2)/(1 + x^2)=0

    の とき  (2 x (1 - x^2))/(1 + x^2)^2 を 求めよ
引用返信/返信 [メール受信/OFF]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■47504 / 親記事)  双曲線の準円?
□投稿者/ 掛け流し 一般人(1回)-(2015/10/01(Thu) 23:28:12)
    ご教授お願いします。
    座標平面において、
    「双曲線 (x^2)/(a^2)-(y^2)/(b^2)=1 について、直交する2つの接線の交点の軌跡を求めよ。」の問いに対して、
    「a>b のとき(必要)、原点中心の半径sqr(a^2-b^2)の円」と求めたのですが、解答には、「a=bのとき、原点(1点)」も付け加えてありました。
    a=b のときは、双曲線の漸近線は y=±x となり、これらは、原点で直交するから、「お互いが原点を通り、直交する2つの接線は存在しない」ので、答えの付け足しの部分は間違いと考えますが、いかがでしょうか?
引用返信/返信 [メール受信/OFF]

▽[全レス2件(ResNo.1-2 表示)]
■47506 / ResNo.1)  Re[1]: 双曲線の準円?
□投稿者/ IT 一般人(1回)-(2015/10/03(Sat) 08:31:36)
引用返信/返信 [メール受信/OFF]
■47507 / ResNo.2)  ITさん
□投稿者/ 掛け流し 一般人(2回)-(2015/10/04(Sun) 10:51:32)
    ITさん、早速のご返答ありがとうございます。
    解析幾何の大御所 矢野健太郎先生の書物には、2接線の交点の軌跡は
    a>b のときは、原点中心、半径(a^2-b^2)^(1/2)の円
    a=b のときは、原点(点円)のみ
    a<b のときは、(題意を満たす2接線が存在しないので)、軌跡なし
    となっております。(必要条件で追っています。)
    (数学セミナー別冊数学リーディングス他)
    私としては、これらの解答は、無限遠点(漸近線上)の点も接線としたときの場合と解釈すべきと考えています。
    ありがとうございます。

引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-2]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■47499 / 親記事)  定積分
□投稿者/ 積分 一般人(1回)-(2015/09/20(Sun) 03:47:36)
    次の定積分が上手く行きません。分かる方よろしくお願いします。
    xについての積分0からPi/2まで。
    関数は(Sin(x))^3/((Sin(x))^3+(Cos(x))^3)です。

    (携帯)
引用返信/返信 [メール受信/OFF]



■記事リスト / ▲上のスレッド
■47498 / 親記事)  3次元の紐の長さの算出方法
□投稿者/ jyo 一般人(1回)-(2015/09/13(Sun) 12:50:23)
    こんにちわ。質問させてください。下図の内容です。
    http://imepic.jp/20150912/360290

    3次元に曲がっている紐の長さを算出したいのですが、x,y,zの紐の始点・終点の座標と円弧のRがわかっている場合は紐の長さを算出することは可能でしょうか?
    *xy平面上では3つの円弧、yz平面上では2つの円弧がつながっていて、紐に直線部分はありません。

    もし解が算出できるなら、その解とそれを導くための工程を教えていただけますか?
    宜しくお願い致します。
引用返信/返信 [メール受信/OFF]






Mode/  Pass/

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

- Child Tree -
Edit By 数学ナビゲーター