数学ナビゲーター掲示板

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

■ 過去ログ検索の勧め⇒ここを読んでみてください
google検索

 
この掲示板の過去ログをgoogleで検索します。
検索条件:
現在のログを検索過去のログを検索
■ 2006/2/20より、累計:、本日:、昨日:
数式の記述方法
TeX入力ができます。 \[ TeX形式数式 \] あるいは,$ TeX形式数式 $ で数式を記述します。
 TeX形式数式には半角英数字のみです。詳しくは、ここを見てください。文字化けが発生したときはここを見てください。
■ 質問をする方は、回答者に失礼のないようにお願いします。
携帯電話でこの掲示板を見れるようにしました。⇒ここを見てください。
■ 24時間以内に作成されたスレッドは New で表示されます。
■ 24時間以内に更新されたスレッドは UpDate で表示されます。

記事リスト ( )内の数字はレス数
New二重積分について(0) | New原点を中心とする単位円上の複素数(0) | UpDate幾何学(1) | UpDate論理式(3) | NewQ=10√KL をグラフにする(0) | Nomal二次方程式(2) | Nomal積と和が一致する自然数の組(4) | Nomalグラムシュミット(0) | Nomal大学数学(1) | Nomal共分散行列(0) | Nomal大学数学(0) | Nomal素数(6) | Nomal確率 統計の問題(0) | Nomalフェルマの小定理(1) | Nomal大学線形(0) | Nomal大学線形(0) | Nomal大学数学 4次多項式 フェラーリの解法(1) | Nomal漸化式(1) | Nomal最大公約数(0) | Nomal和の求め方がわかりません。(3) | Nomal業界最も人気(0) | Nomalベイズ更新について(0) | Nomal無限積分(2) | Nomal三角関数の極限(1) | Nomal極限(3) | Nomal約数(2) | Nomal約数(2) | Nomal順列組合せ〜区別するものしないもの(6) | Nomal場合の数(2) | Nomal数的推理(2) | Nomal三角形の辺の長さ(6) | Nomal単位円と三角形(1) | Nomal1/xについて(2) | Nomal調べた確率がどれくらい信用できるかを求めたい(0) | Nomal命題の真偽(8) | Nomal期待値(13) | Nomal因数分解(2) | Nomal√の問題(2) | Nomal極形式(6) | Nomaltanと自然数(2) | Nomalα^52(2) | Nomal放物線の標準形(4) | Nomal循環小数(2) | Nomal四角形の辺の長さ(2) | Nomalコラッツ予想について(2) | Nomal三角形の角(3) | Nomal有理数と素数(1) | Nomal円と曲線(3) | Nomalフィボナッチ数列について。(0) | Nomal導関数の定義について(2) | Nomal楕円曲線(1) | Nomallog(1+x)<√x(4) | Nomal円と3次関数(4) | NomalΣと積分の交換(3) | Nomalcos(1)とtan(1/2)(2) | Nomal合成数(2) | Nomal積分について(2) | Nomal因数分解(4) | Nomal2次関数(1) | Nomal常用対数と桁数の関係(2) | Nomal(削除)(2) | Nomal行列を含む偏微分(0) | Nomalカタラン数(4) | Nomal無限級数(1) | Nomalスーパコピーvog.agvol.com/brand-70-c0.html ボーイロンドンブラドスパーピー(0) | Nomalかんたんなフェルマーの最終定理の証明(19) | Nomal写像の問題です。(0) | Nomal離散数学 有向グラフの問題(0) | Nomal原始関数問題(1) | Nomal三角形と円の関係について(0) | Nomal|e^(icosθ)|、|e^(isinθ)|について(2) | Nomal大学数学 重積分(0) | Nomal簡単な論理式〜変な質問ですみませんが・・・(2) | Nomal割り算(1) | Nomal確率の問題です。大至急お願い致します(0) | Nomal整数解(7) | Nomal全ての 整数解 等(4) | Nomal完璧なのコピーbuytowe(0) | Nomal素数(1) | Nomal指数計算の練習(2) | Nomal微分積分(0) | Nomalテイラー展開(0) | Nomal合同式(1) | Nomalエルミート行列(0) | Nomal【大学数学】貨幣需要関数(0) | Nomal陰関数(0) | Nomalフェルマーの最終定理の証明(6) | Nomal統計学(0) | Nomalベクトル空間(0) | Nomal複素数の三角不等式(引き算)(2) | Nomal微分の問題(0) | Nomal体積(1) | Nomalフェルマーの最終定理の証明(z=x+rとおく方法)(1) | Nomal微分可能(2) | Nomalチェビシェフ 偏差値(0) | Nomal線形代数(1) | Nomal複素積分(2) | Nomalテイラー展開(2) | Nomal線形変換(1) | Nomal大学数学 線形代数 部分空間の証明(0) |



■記事リスト / ▼下のスレッド
■50540 / 親記事)  微分の問題
□投稿者/ 微分 一般人(1回)-(2020/11/10(Tue) 23:23:26)
    すみません、1か2番分かる方お願いします。。。
1021×439 => 250×107

1605018206.png
/58KB
引用返信/返信 [メール受信/OFF]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■50538 / 親記事)  体積
□投稿者/ waka 一般人(1回)-(2020/11/07(Sat) 15:45:05)
    「xyz空間において、xy平面上の円板x^2+y^2≦1を底面とし、点(0,0,1)を頂点とする円錐をCとする。また、不等式x≧(z-1)^2が表す立体をPとする。CとPの共通部分CとPの共通部分の体積を求めよ。」という問題の解説をお願いします。よろしくお願いいたします。
引用返信/返信 [メール受信/OFF]

▽[全レス1件(ResNo.1-1 表示)]
■50539 / ResNo.1)  Re[1]: 体積
□投稿者/ らすかる 一般人(2回)-(2020/11/09(Mon) 17:44:20)
    円錐の側面はx^2+y^2=(1-z)^2だから
    x=tで切った断面の形は1-√t≦z≦1-√(y^2+t^2)
    1-√t=1-√(y^2+t^2)の解はy=±√{t(1-t)}なので、断面積は
    2∫[0〜√{t(1-t)}]√t-√(y^2+t^2) dy
    =t√(1-t)+t^2logt-t^2log(√(t(1-t))+√t)
    よって求める体積は
    ∫[0〜1]t√(1-t)+t^2logt-t^2log(√(t(1-t))+√t) dt=4/45

引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-1]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■50535 / 親記事)  フェルマーの最終定理の証明(z=x+rとおく方法)
□投稿者/ 日高 一般人(1回)-(2020/11/06(Fri) 08:42:43)
    【定理】pが奇素数のとき、x^p+y^p=z^pは自然数解を持たない。
    【証明】x^p+y^p=z^pが有理数解を持つならば、x,yは有理数。よって、x,yを有理数とする。
    x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。。
    (1)をr^(p-1){(y/r)^p-1}=ap{x^(p-1)+…+r^(p-2)x}(1/a)…(2)と変形する。
    (2)はa=1、r^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
    (2)はa=1以外、r^(p-1)=apのとき、x^p+y^p=(x+(ap)^{1/(p-1)})^p…(4)となる。
    (3)はrが無理数なので、x,yを有理数とすると、成り立たない。
    (4)の解は(3)の解のa^{1/(p-1)}倍となる。
    ∴pが奇素数のとき、x^p+y^p=z^pは自然数解を持たない。

    【定理】p=2のとき、x^p+y^p=z^pは自然数解を持つ。
    【証明】x^p+y^p=z^pが有理数解を持つならば、x,yは有理数。よって、x,yを有理数とする。
    x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
    (1)をr{(y/r)^2-1}=a2x(1/a)…(2)と変形する。
    (2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
    (2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
    (3)はrが有理数なので、yを有理数とすると、xは有理数となる。
    (4)の解は(3)の解のa倍となる。
    ∴p=2のとき、x^p+y^p=z^pは自然数解を持つ
引用返信/返信 [メール受信/OFF]

▽[全レス1件(ResNo.1-1 表示)]
■50536 / ResNo.1)  Re[1]: フェルマーの最終定理の証明(z=x+rとおく方法)
□投稿者/ 屁留真亜 一般人(1回)-(2020/11/06(Fri) 19:20:50)
     その証明は数学になっていないので、あなたの建てた
    ttps://rio2016.5ch.net/test/read.cgi/math/1602912311/
    で議論して下さい。

     予想されるどこが数学になっていないという質問に対しては
     全てですwwwwwwwwwwwwwwwwwwwwww
    という回答を用意しておきます。


引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-1]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■50532 / 親記事)  微分可能
□投稿者/ 7610 一般人(1回)-(2020/11/05(Thu) 19:19:20)
      f(x) = (x^3-1)/(x-1)
      g(x) = x^2+x+1

     f(x) は x^3-1 を因数分解して式変形すれば g(x) になりますが、もともと f(x) は x=1 では定義されていないから
      f(x) = g(x)
    ではないはずです。
     導関数はどちらも2x+1ですが、f(x) の場合、定義されていない x=1 で微分可能だと言えるのでしょうか?
     微分可能だとしたら、f(x) は定義されていない x=1 で連続ということになってしまいますが。

引用返信/返信 [メール受信/OFF]

▽[全レス2件(ResNo.1-2 表示)]
■50533 / ResNo.1)  Re[1]: 微分可能
□投稿者/ らすかる 一般人(1回)-(2020/11/05(Thu) 19:27:54)
    > f(x) の場合、定義されていない x=1 で微分可能だと言えるのでしょうか?
    定義域外ですから、もちろん言えません。
    さらに、「微分不可能」とも言えません。
    定義域外は、「微分可能かどうかの判定が不可能」です。
引用返信/返信 [メール受信/OFF]
■50534 / ResNo.2)  Re[2]: 微分可能
□投稿者/ 7610 一般人(2回)-(2020/11/05(Thu) 20:36:10)
    すばやい回答まことにありがとうございました。勉強になります。
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-2]



■記事リスト / ▲上のスレッド
■50531 / 親記事)  チェビシェフ 偏差値
□投稿者/ 大学生 一般人(1回)-(2020/11/04(Wed) 20:21:48)
    統計学について。

    分布が左右対称であるとき、偏差値70以上のひとは全体の何分の一以下か。チェビシェフの不等式より求めよ。

    答えは1/50以下と一応出てますが、合ってますか。計算式教えてもらいたいです。
引用返信/返信 [メール受信/OFF]






Mode/  Pass/

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

- Child Tree -
Edit By 数学ナビゲーター