数学ナビゲーター掲示板

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

■ 過去ログ検索の勧め⇒ここを読んでみてください
google検索

 
この掲示板の過去ログをgoogleで検索します。
検索条件:
現在のログを検索過去のログを検索
■ 2006/2/20より、累計:、本日:、昨日:
数式の記述方法
TeX入力ができます。 \[ TeX形式数式 \] あるいは,$ TeX形式数式 $ で数式を記述します。
 TeX形式数式には半角英数字のみです。詳しくは、ここを見てください。文字化けが発生したときはここを見てください。
■ 質問をする方は、回答者に失礼のないようにお願いします。
携帯電話でこの掲示板を見れるようにしました。⇒ここを見てください。
■ 24時間以内に作成されたスレッドは New で表示されます。
■ 24時間以内に更新されたスレッドは UpDate で表示されます。

記事リスト ( )内の数字はレス数
New二重積分について(0) | New原点を中心とする単位円上の複素数(0) | UpDate幾何学(1) | UpDate論理式(3) | NewQ=10√KL をグラフにする(0) | Nomal二次方程式(2) | Nomal積と和が一致する自然数の組(4) | Nomalグラムシュミット(0) | Nomal大学数学(1) | Nomal共分散行列(0) | Nomal大学数学(0) | Nomal素数(6) | Nomal確率 統計の問題(0) | Nomalフェルマの小定理(1) | Nomal大学線形(0) | Nomal大学線形(0) | Nomal大学数学 4次多項式 フェラーリの解法(1) | Nomal漸化式(1) | Nomal最大公約数(0) | Nomal和の求め方がわかりません。(3) | Nomal業界最も人気(0) | Nomalベイズ更新について(0) | Nomal無限積分(2) | Nomal三角関数の極限(1) | Nomal極限(3) | Nomal約数(2) | Nomal約数(2) | Nomal順列組合せ〜区別するものしないもの(6) | Nomal場合の数(2) | Nomal数的推理(2) | Nomal三角形の辺の長さ(6) | Nomal単位円と三角形(1) | Nomal1/xについて(2) | Nomal調べた確率がどれくらい信用できるかを求めたい(0) | Nomal命題の真偽(8) | Nomal期待値(13) | Nomal因数分解(2) | Nomal√の問題(2) | Nomal極形式(6) | Nomaltanと自然数(2) | Nomalα^52(2) | Nomal放物線の標準形(4) | Nomal循環小数(2) | Nomal四角形の辺の長さ(2) | Nomalコラッツ予想について(2) | Nomal三角形の角(3) | Nomal有理数と素数(1) | Nomal円と曲線(3) | Nomalフィボナッチ数列について。(0) | Nomal導関数の定義について(2) | Nomal楕円曲線(1) | Nomallog(1+x)<√x(4) | Nomal円と3次関数(4) | NomalΣと積分の交換(3) | Nomalcos(1)とtan(1/2)(2) | Nomal合成数(2) | Nomal積分について(2) | Nomal因数分解(4) | Nomal2次関数(1) | Nomal常用対数と桁数の関係(2) | Nomal(削除)(2) | Nomal行列を含む偏微分(0) | Nomalカタラン数(4) | Nomal無限級数(1) | Nomalスーパコピーvog.agvol.com/brand-70-c0.html ボーイロンドンブラドスパーピー(0) | Nomalかんたんなフェルマーの最終定理の証明(19) | Nomal写像の問題です。(0) | Nomal離散数学 有向グラフの問題(0) | Nomal原始関数問題(1) | Nomal三角形と円の関係について(0) | Nomal|e^(icosθ)|、|e^(isinθ)|について(2) | Nomal大学数学 重積分(0) | Nomal簡単な論理式〜変な質問ですみませんが・・・(2) | Nomal割り算(1) | Nomal確率の問題です。大至急お願い致します(0) | Nomal整数解(7) | Nomal全ての 整数解 等(4) | Nomal完璧なのコピーbuytowe(0) | Nomal素数(1) | Nomal指数計算の練習(2) | Nomal微分積分(0) | Nomalテイラー展開(0) | Nomal合同式(1) | Nomalエルミート行列(0) | Nomal【大学数学】貨幣需要関数(0) | Nomal陰関数(0) | Nomalフェルマーの最終定理の証明(6) | Nomal統計学(0) | Nomalベクトル空間(0) | Nomal複素数の三角不等式(引き算)(2) | Nomal微分の問題(0) | Nomal体積(1) | Nomalフェルマーの最終定理の証明(z=x+rとおく方法)(1) | Nomal微分可能(2) | Nomalチェビシェフ 偏差値(0) | Nomal線形代数(1) | Nomal複素積分(2) | Nomalテイラー展開(2) | Nomal線形変換(1) | Nomal大学数学 線形代数 部分空間の証明(0) |



■記事リスト / ▼下のスレッド
■50236 / 親記事)  動点の確率
□投稿者/ まのたろ 一般人(1回)-(2020/03/04(Wed) 20:17:20)
    長さ1の線分AB上を点Xが移動する。
    最初点Xは線分ABの中点にあり、
    1秒ごとに確率1/2で線分AXの中点か線分BXの中点に移動する。
    n秒後にはじめて線分AXの長さが1/4未満になる確率を求めよ。

    教えて下さい。
    お願いします。
引用返信/返信 [メール受信/OFF]

▽[全レス2件(ResNo.1-2 表示)]
■50237 / ResNo.1)  Re[1]: 動点の確率
□投稿者/ らすかる 一般人(4回)-(2020/03/04(Wed) 22:09:37)
    条件を満たすのは「n-1回目とn回目に初めて2回連続AX側が選択される確率」と同じです。
    k秒後までに2連続AX側がなく最後の選択がAX側であるパターンの数をa[k]、
    k秒後までに2連続AX側がなく最後の選択がBX側であるパターンの数をb[k]とおくと
    a[1]=b[1]=1, a[m+1]=b[m], b[m+1]=a[m]+b[m]
    このa[k]はフィボナッチ数なので、一般項は
    a[k]={(1+√5)^k-(1-√5)^k}/(√5・2^k)
    よって求める確率は
    a[n-1]/2^n={(1+√5)^(n-1)-(1-√5)^(n-1)}/(√5・2^(2n-1))
    となります。
    (上の式はn≧2で定義される式ですが、n=1で正しく0となりますのでn≧1で正しい式です。)
引用返信/返信 [メール受信/OFF]
■50238 / ResNo.2)  Re[2]: 動点の確率
□投稿者/ まのたろ 一般人(2回)-(2020/03/05(Thu) 06:38:28)
    ありがとうございます。
    とても分かりやすいです。
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-2]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■50223 / 親記事)  sinの不等式
□投稿者/ 6本の電柱 一般人(1回)-(2020/03/01(Sun) 17:55:55)
    自然数nと0<r<1、0<θ<πをみたす実数r、θに対して
    Σ[k=1→n] r^(2k-1) * sin((2k-1)θ) >0
    が成り立つことの証明を教えて下さい。
引用返信/返信 [メール受信/OFF]

▽[全レス4件(ResNo.1-4 表示)]
■50224 / ResNo.1)  Re[1]: sinの不等式
□投稿者/ m 一般人(3回)-(2020/03/02(Mon) 23:46:05)
    複素数やオイラーの公式は使っていいですか。
引用返信/返信 [メール受信/OFF]
■50225 / ResNo.2)  Re[2]: sinの不等式
□投稿者/ 6本の電柱 一般人(2回)-(2020/03/03(Tue) 10:05:08)
    大丈夫です、お願いします。
引用返信/返信 [メール受信/OFF]
■50229 / ResNo.3)  Re[3]: sinの不等式
□投稿者/ m 一般人(4回)-(2020/03/03(Tue) 13:57:54)
    2020/03/03(Tue) 14:17:56 編集(投稿者)
    2020/03/03(Tue) 14:16:27 編集(投稿者)

    で示せば十分。
    (∵
    のときは となって成立
    のとき よ りに帰着


    複素平面で考える。


    と定める。


    の虚部 を示す。


    三点 を通る円を 、その内側を とする。

    次の3つを示せばいい。

    (1)

    (2)

    (3) (上半平面)


    証明:
    図 ttps://www.geogebra.org/classic/uvhyd27f

    (1)
    は線分 の内分点
    よって

    (2)

    より円 は三点を通る。

    は線分 の内分点
    は線分 の内分点
    だから(点の中心が順に同一直線上に並んで、半径は の方が短いことが言えるから)


    (3)

    より、の中心は虚軸正にある。原点を通るから上半平面にある。



    もしかしたら、もっと簡単にできるかもしれません。
    ""は角ABCの意味です。("\angle"がうまく変換されない。)

引用返信/返信 [メール受信/OFF]
■50233 / ResNo.4)  Re[4]: sinの不等式
□投稿者/ 6本の電柱 一般人(3回)-(2020/03/03(Tue) 22:02:31)
    有り難うございました。
    図も付けていただいて、よく理解できました。
    こんなに発想力がいる問題とは思いませんでした。
解決済み!
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-4]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■50226 / 親記事)  極大と変曲
□投稿者/ ブリリアンto 一般人(1回)-(2020/03/03(Tue) 12:10:37)
    この問題を教えて下さい。

    f(x)=e^(kx)*sin(x) (0<x<π) とする。
    f(x)の極大点のy座標をp、f(x)の変曲点のy座標をqとする。
    lim[k→∞]q/pの値を求めよ。
引用返信/返信 [メール受信/OFF]

▽[全レス4件(ResNo.1-4 表示)]
■50228 / ResNo.1)  Re[1]: 極大と変曲
□投稿者/ らすかる 一般人(2回)-(2020/03/03(Tue) 13:28:01)
    極大値をとるxはf'(x)=0からksinx+cosx=0なのでx=π-arctan(1/k)
    変曲点のxはf''(x)=0からk^2sinx+2kcosx-sinx=0なのでx=π-arctan(2k/(k^2-1))
    よって
    p=e^(k(π-arctan(1/k)))*sin(π-arctan(1/k))
    =e^(k(π-arctan(1/k)))/√(k^2+1)
    q=e^(k(π-arctan(2k/(k^2-1))))*sin(π-arctan(2k/(k^2-1)))
    =2ke^(k(π-arctan(2k/(k^2-1))))/(k^2+1)
    ∴q/p={2k/√(k^2+1)}{e^(k(π-arctan(2k/(k^2-1))))/e^(k(π-arctan(1/k)))}
    lim[k→∞]2k/√(k^2+1)=2
    loglim[k→∞]e^(k(π-arctan(2k/(k^2-1))))/e^(k(π-arctan(1/k)))
    =lim[k→∞]log{e^(k(π-arctan(2k/(k^2-1))))/e^(k(π-arctan(1/k)))}
    =lim[k→∞]k(π-arctan(2k/(k^2-1)))-k(π-arctan(1/k))
    =lim[k→∞]karctan(1/k)-karctan(2k/(k^2-1))
    =lim[k→∞]{k(1/k)}{(1/k)/arctan(1/k)}-{k・2k/(k^2-1)}{(2k/(k^2-1))/arctan(2k/(k^2-1))}
    =-1
    から
    lim[k→∞]e^(k(π-arctan(2k/(k^2-1))))/e^(k(π-arctan(1/k)))=1/e
    ∴lim[k→∞]q/p=2/e

引用返信/返信 [メール受信/OFF]
■50230 / ResNo.2)  Re[2]: 極大と変曲
□投稿者/ ブリリアンto 一般人(2回)-(2020/03/03(Tue) 16:30:28)
    ありがとうございます。

    高校生向けの問題なのでarctanが出ないように解けますでしょうか?
引用返信/返信 [メール受信/OFF]
■50231 / ResNo.3)  Re[3]: 極大と変曲
□投稿者/ らすかる 一般人(3回)-(2020/03/03(Tue) 18:24:38)
    極大値をとるxをuとするとf'(u)=0からksinu+cosu=0なのでtanu=-1/k
    変曲点のxをvとするとf''(v)=0からk^2sinv+2kcosv-sinv=0なのでtanv=-2k/(k^2-1)
    よって
    p=e^(ku)*sinu=e^(ku)/√(k^2+1)
    q=e^(kv)*sinv=2ke^(kv)/(k^2+1)
    ∴q/p={2k/√(k^2+1)}{e^(kv)/e^(ku)}
    lim[k→∞]2k/√(k^2+1)=2
    loglim[k→∞]e^(kv)/e^(ku)
    =lim[k→∞]log{e^(kv)/e^(ku)}
    =lim[k→∞]kv-ku
    =lim[k→∞]k(v/tanv)tanv-k(u/tanu)tanu
    =lim[k→∞]k(v/tanv)(-2k/(k^2-1))-k(u/tanu)(-1/k)
    =-1
    から
    lim[k→∞]e^(kv)/e^(ku)=1/e
    ∴lim[k→∞]q/p=2/e

引用返信/返信 [メール受信/OFF]
■50232 / ResNo.4)  Re[4]: 極大と変曲
□投稿者/ ブリリアンto 一般人(3回)-(2020/03/03(Tue) 19:32:49)
    ありがとうございます。
    とても感謝しております。
解決済み!
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-4]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■50218 / 親記事)  ピタゴラスの定理の簡単な証明
□投稿者/ 日高 一般人(5回)-(2020/02/16(Sun) 07:44:17)
    【定理】p=2のとき、x^p+y^p=z^pは、自然数解を持つ。
    【証明】z^p-y^p=(z+y)(z-y)と変形して、
    x^p=(z+y)(z-y)…(1)を考える。
    (x^p/a)a=(z+y)(z-y)…(2)
    (x^p/1)1=(z+y)(z-y)…(3)
    等式の性質により、(3)が成り立つならば、(1),(2)も成り立つ。
    (3)が成り立たないならば、(1),(2)も成り立たない。
    (3)を(x^p/1)=A、1=B、(z+y)=C、(z-y)=Dとおく。
    AB=CDならば、B=Dのとき、A=Cとなる。
    1=(z-y)は、z=5、y=4のとき、成り立つ。
    これを、(x^p/1)=(z+y)に代入すると、x=3のとき、成り立つ。
    (3)が成り立つので、(1),(2)も成り立つ。
    ∴p=2のとき、x^p+y^p=z^pは、自然数解を持つ。
引用返信/返信 [メール受信/OFF]

▽[全レス3件(ResNo.1-3 表示)]
■50219 / ResNo.1)  Re[1]: ピタゴラスの定理の簡単な証明
□投稿者/ 屁留麻亜 一般人(3回)-(2020/02/16(Sun) 11:25:53)
     ここは数学の質問をする掲示板です。ピタゴラスの定理は何百通りもの証明が知られています。数学漫才のネタを議論したいのであればあなたのホームグラウンドである

    ttps://rio2016.5ch.net/test/read.cgi/math/1581236794/

    へお帰りください。
引用返信/返信 [メール受信/OFF]
■50220 / ResNo.2)  Re[2]: ピタゴラスの定理の簡単な証明
□投稿者/ 日高 一般人(6回)-(2020/02/16(Sun) 12:07:01)
    No50219に返信(屁留麻亜さんの記事)
    >  ここは数学の質問をする掲示板です。ピタゴラスの定理は何百通りもの証明が知られています。数学漫才のネタを議論したいのであればあなたのホームグラウンドである
    >
    > ttps://rio2016.5ch.net/test/read.cgi/math/1581236794/
    >
    > へお帰りください。

    理由を教えていただけないでしょうか。
引用返信/返信 [メール受信/OFF]
■50221 / ResNo.3)  Re[3]: ピタゴラスの定理の簡単な証明
□投稿者/ 通りすがり 一般人(2回)-(2020/02/16(Sun) 16:23:05)
    □投稿者/ 日高 大御所(392回)-(2019/09/26(Thu) 09:43:17)

    >>でも、どこかに私に間違いを説明できる人がいるかもわかりません。
    >  そういう奇特な人が現れるまで延々と続けるつもりか?
    >  それならこんな過疎った掲示板でなく
    >  ttps://rio2016.5ch.net/test/read.cgi/math/1567920449/
    > で聞いた方が奇特な人を見つけられる可能性が高いぞ。

    ありがとうございました。5ちゃんねる掲示板に投稿したら、
    奇特な人が、いました。

引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-3]



■記事リスト / ▲上のスレッド
■50210 / 親記事)  複素積分の絶対値の評価
□投稿者/ 3316 一般人(6回)-(2020/02/07(Fri) 08:40:57)
    2020/02/07(Fri) 09:50:33 編集(投稿者)

     添付図の第1行

      |∫[0→π]i/(R^3・e(3iθ)+1) dθ|≦∫[0→π]|i/(R^3・e(3iθ)+1) dθ|

    で、右辺が左辺より大きくなる場合を教えてください。

      ∫[0→π]i/(R^3・e(3iθ)+1) dθ

    は、複素平面上で原点を中心とする半径Rの円に沿った積分です。

     たとえば

      |納k=0→N]zk|
     = |z0 + z1 + …… zk| ≦ |z0| + |z1| + …… |zk|
                 = 納k=0→N]|zk|
    からのアナロジーで納得すればいいんですかね?

630×255 => 250×101

_____001.png
/17KB
引用返信/返信 [メール受信/OFF]

▽[全レス2件(ResNo.1-2 表示)]
■50211 / ResNo.1)  Re[1]: 複素積分の絶対値の評価
□投稿者/ m 一般人(2回)-(2020/02/07(Fri) 11:20:32)
    どんな"場合"が要求されているのかよく分かりません(もう少し詳しく書いてください。)が、例えば

    の単位円上の線積分を考えると



    の左辺は、右辺はになります。
    ちなみにとしても、上と同じ結果が成り立ちます。

引用返信/返信 [メール受信/OFF]
■50212 / ResNo.2)  Re[2]: 複素積分の絶対値の評価
□投稿者/ 3316 一般人(7回)-(2020/02/07(Fri) 13:02:16)
     ああ、なるほど。
     丁寧な回答まことにありがとうございました。

引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-2]






Mode/  Pass/

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

- Child Tree -
Edit By 数学ナビゲーター