数学ナビゲーター掲示板

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

■ 過去ログ検索の勧め⇒ここを読んでみてください
google検索

 
この掲示板の過去ログをgoogleで検索します。
検索条件:
現在のログを検索過去のログを検索
■ 2006/2/20より、累計:、本日:、昨日:
数式の記述方法
TeX入力ができます。 \[ TeX形式数式 \] あるいは,$ TeX形式数式 $ で数式を記述します。
 TeX形式数式には半角英数字のみです。詳しくは、ここを見てください。文字化けが発生したときはここを見てください。
■ 質問をする方は、回答者に失礼のないようにお願いします。
携帯電話でこの掲示板を見れるようにしました。⇒ここを見てください。
■ 24時間以内に作成されたスレッドは New で表示されます。
■ 24時間以内に更新されたスレッドは UpDate で表示されます。

記事リスト ( )内の数字はレス数
Nomalプログラミング言語BASIC言語について。(14) | Nomal統計/区画幅について(3) | Nomal2変数関数の極値条件(2) | Nomal素数生成法について(0) | Nomalsupreme 偽物(0) | Nomal合同式の計算(4) | Nomal縦曲線について(0) | Nomal銃曲線における計画高ついて(0) | Nomal測量学について(0) | Nomal訂正です(1) | Nomal対数の取り方、シグモイド、ロジスティック関数(0) | Nomal緩和曲線の開始位置と終了地点および途中の高さxについて(0) | Nomalf'(x) の増減の判定方法(3) | Nomal三角形と内接円について改(1) | Nomal三角形と内接円について。(1) | Nomal増減表の作り方(6) | Nomal4次関数(3) | Nomal約数を mod 13 で見る(1) | Nomal三葉曲線の長さについて(2) | Nomal自作問題(3) | Nomalフェルマーの最終定理の簡単な証明9(23) | Nomal(削除)(0) | Nomalケプラー方程式による惑星の会合計算(0) | Nomal追いかけ算 惑星会合時期(1) | Nomal担当者の時間割(2) | Nomal三次関数と長方形(4) | Nomal(削除)(0) | Nomal屑スレを下げるための問題(2) | Nomal3次関数について。(8) | Nomal必要十分条件の証明(3) | Nomalフェルマーの最終定理の簡単な証明8(74) | Nomal合コン(4) | Nomal基本的な確率(2) | Nomal同型写像(0) | Nomal正2n角形と確率(4) | Nomal中学生でも解けそうな入試問題001(1) | Nomalご教示ください(5) | Nomal階段行列の作り方(4) | Nomal統計学の問題です(0) | Nomal3の倍数(4) | Nomalラプラス方程式 境界条件(0) | Nomal対偶について(8) | Nomal偶数と奇数(8) | Nomalsinの関係(2) | Nomal2^(1/3)とωと√3(4) | Nomal supreme コート(0) | Nomalフェルマーの最終定理の簡単な証明7(101) | Nomal目的の形への行列の三角化(2) | Nomal(削除)(2) | Nomal等角写像の問題です。(2) | Nomal掲示板について。(1) | Nomalフェルマーの定理 RSA暗号(1) | Nomalフェルマーの最終定理の簡単な証明6(101) | Nomalオイラーの公式(3) | Nomalグッチンコピー(0) | Nomal6次方程式(2) | Nomalベクトル解析 証明(0) | Nomal位相数学、位相空間(0) | Nomal実生活に活きる確率(0) | Nomalオイラーの公式 導関数の定義(2) | Nomalオイラーの公式(3) | Nomal2階常微分方程式 (1) | Nomalオイラーの公式(0) | Nomalフェルマーの最終定理の簡単な証明5(101) | Nomal数学について。(1) | Nomal順列(4) | Nomal線形代数(1) | Nomal整数問題(1) | Nomalフェルマーの最終定理の簡単な証明4(101) | Nomal大小の比較(7) | Nomalシミュレーションについて(1) | Nomal期待値(2) | Nomal数学について。(1) | Nomalフーリエ変換の求め方(1) | Nomalisometric matrix,p-ノルムについて(0) | Nomalフェルマーの最終定理の簡単な証明3(76) | Nomald(cos^2θ)/dθ=と置けるような相似の図を見つけたいです!(0) | Nomal1/ cos^2θの微分を画像の図を用いて解きたい!(0) | Nomalラグランジュの剰余項(1) | Nomallog2とマクローリン展開についての証明(1) | Nomal極限を求める(大学数学)(1) | Nomal三角方程式(2) | Nomal確率密度(2) | Nomal方程式(2) | Nomal多項式の係数(1) | Nomalフェルマーの最終定理の簡単な証明2(101) | Nomal複素平面上の領域について(0) | Nomal数学検定について。(0) | Nomal複素解析(2) | Nomal定積分と体積(1) | Nomal極限値(3) | Nomal複素解析(7) | Nomalフェルマーの最終定理の簡単な証明(101) | Nomal高校推論の問題(1) | Nomal漸化式の項を減らす(4) | Nomalカーリングの7試合とは(4) | Nomal(削除)(3) | Nomalたぶん三角関数の等式(6) | Nomal確率、期待値の計算(0) | Nomal数学オリンピックの幾何の問題(2) |



■記事リスト / ▼下のスレッド
■48449 / 親記事)  円順列
□投稿者/ waka 一般人(1回)-(2018/05/30(Wed) 20:37:59)
    お願いします。
    白1個、赤2個、青4個の円順列で(7-1)!/(2!4!) で15通りあるのは分かるのですが、実際に絵を書いてみたのですが1つだけ見つかりません。
     「WRRBBBB」のように15通り書いてもらえませんか。よろしくお願いします。
引用返信/返信 [メール受信/OFF]

▽[全レス2件(ResNo.1-2 表示)]
■48450 / ResNo.1)  Re[1]: 円順列
□投稿者/ らすかる 一般人(2回)-(2018/05/30(Wed) 21:37:11)
    WBBBBRR
    WBBBRBR
    WBBBRRB
    WBBRBBR
    WBBRBRB
    WBBRRBB
    WBRBBBR
    WBRBBRB
    WBRBRBB
    WBRRBBB
    WRBBBBR
    WRBBBRB
    WRBBRBB
    WRBRBBB
    WRRBBBB
    で15通りです。
引用返信/返信 [メール受信/OFF]
■48451 / ResNo.2)  Re[2]: 円順列
□投稿者/ らすかる 一般人(3回)-(2018/05/30(Wed) 21:39:28)
    BとRが似てて見づらいですね。
    W→★、B→○、R→●とすると以下のように見やすくなります。
    ★○○○○●●
    ★○○○●○●
    ★○○○●●○
    ★○○●○○●
    ★○○●○●○
    ★○○●●○○
    ★○●○○○●
    ★○●○○●○
    ★○●○●○○
    ★○●●○○○
    ★●○○○○●
    ★●○○○●○
    ★●○○●○○
    ★●○●○○○
    ★●●○○○○

引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-2]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■48439 / 親記事)  不等式
□投稿者/ 掛け流し 一般人(1回)-(2018/05/02(Wed) 00:04:20)
    次の不等式を証明してください。

    a^4 + b^4 + c^4 + d^4 >= 4abcd

    よろしくお願いします。
引用返信/返信 [メール受信/OFF]

▽[全レス4件(ResNo.1-4 表示)]
■48440 / ResNo.1)  Re[1]: 不等式
□投稿者/ らすかる 一般人(1回)-(2018/05/02(Wed) 02:43:46)
    a^4+b^4+c^4+d^4-4abcd
    ={(a^2-b^2)^2+(a^2-c^2)^2+(a^2-d^2)^2+(b^2-c^2)^2+(b^2-d^2)^2+(c^2-d^2)^2
     +2(ab-cd)^2+2(ac-bd)^2+2(ad-bc)^2}/3≧0 なので
    a^4+b^4+c^4+d^4≧4abcd

引用返信/返信 [メール受信/OFF]
■48441 / ResNo.2)  Re[1]: 不等式
□投稿者/ WIZ 一般人(1回)-(2018/05/02(Wed) 07:37:48)
    別解

    べき乗演算子^は四則演算より優先度が高いものとします。
    a, b, c, dは実数と解釈して回答します。

    相加平均と相乗平均の大小関係を応用します。

    a^4-2(a^2)(b^2)+b^4 = (a^2-b^2)^2 ≧ 0
    c^4-2(c^2)(d^2)+d^4 = (c^2-d^2)^2 ≧ 0
    ですから、
    a^4+b^4+c^4+d^4 ≧ 2(a^2)(b^2)+2(c^2)(d^2)・・・・・(1)

    同様に
    (a^2)(b^2)-2abcd+(c^2)(d^2) = (ab-cd)^2 ≧ 0
    ですから、
    (a^2)(b^2)+(c^2)(d^2) ≧ 2abcd・・・・・(2)

    (1)(2)より、
    a^4+b^4+c^4+d^4 ≧ 2(a^2)(b^2)+2(c^2)(d^2) ≧ 2*2abcd = 4abcd
引用返信/返信 [メール受信/OFF]
■48442 / ResNo.3)  Re[2]: 不等式
□投稿者/ 掛け流し 一般人(2回)-(2018/05/02(Wed) 22:17:25)
    らすかる様 ご教授ありがとうございました。
引用返信/返信 [メール受信/OFF]
■48443 / ResNo.4)  Re[2]: 不等式
□投稿者/ 掛け流し 一般人(3回)-(2018/05/02(Wed) 22:18:56)
    WIZ様 ご教授ありがとうございました。
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-4]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■48434 / 親記事)  複素数
□投稿者/ 逆行 一般人(1回)-(2018/04/07(Sat) 09:02:34)
    zは複素数でz=tan(z)を満たしている。
    このときzは実数である。

    これの証明を教えて下さい。
引用返信/返信 [メール受信/OFF]

▽[全レス1件(ResNo.1-1 表示)]
■48438 / ResNo.1)  Re[1]: 複素数
□投稿者/ & 一般人(1回)-(2018/04/28(Sat) 15:17:35)
    No48434に返信(逆行さんの記事)
    > zは複素数でz=tan(z)を満たしている。
    > このときzは実数である。
    >
    > これの証明を教えて下さい。



    から題意を満たすzは




    とz=0. 題意を満たすzは明らかに実数。


引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-1]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■48413 / 親記事)  模範解答の解説お願いします
□投稿者/ yellowman 一般人(2回)-(2017/12/28(Thu) 21:49:50)
    これがわかりません。
    これの↑DF・↑AB=(↑OF−↑OD)・(↑OA−↑OB)ってどういうことですか?

    ↑AB=↑OB−↑OAではないのですか?
400×300 => 250×187

1514465390.jpg
/33KB
引用返信/返信 [メール受信/OFF]

▽[全レス1件(ResNo.1-1 表示)]
■48433 / ResNo.1)  Re[1]: 模範解答の解説お願いします
□投稿者/ muturajcp 一般人(2回)-(2018/04/05(Thu) 20:07:45)
    DF⊥AB
    DFとABは垂直だから
    DFとABの内積は0だから
    ↑DF・↑AB=0=↑DF・↑BA=(↑OF-↑OD)・(↑OA-↑OB)
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-1]



■記事リスト / ▲上のスレッド
■48423 / 親記事)  三角関数
□投稿者/ フロリック 一般人(1回)-(2018/01/23(Tue) 00:42:55)
    zが虚数ならcos(z)≠0である
    ことの証明を教えて下さい
引用返信/返信 [メール受信/OFF]

▽[全レス1件(ResNo.1-1 表示)]
■48432 / ResNo.1)  Re[1]: 三角関数
□投稿者/ muturajcp 一般人(1回)-(2018/04/05(Thu) 19:31:34)
    x,yを実数
    z=x+iy…(1)
    とする
    zが虚数で
    cos(z)=0
    と仮定すると
    cos(z)
    =(e^{iz}+e^{-iz})/2
    =(e^{i(x+iy)}+e^{-i(x+iy)})/2
    =(e^{ix-y}+e^{-ix+y})/2
    =(e^{ix}e^{-y}+e^{-ix}e^y)/2
    =[e^{-y}(cosx+isinx)+e^y(cosx-isinx)]/2
    =[(e^{-y}+e^y)cosx+i(e^{-y}-e^y)sinx]/2
    =0
    cos(z)の実数部=0だから
    (e^{-y}+e^y)cosx=0…(2)
    cos(z)の虚数部=0だから
    (e^{-y}-e^y)sinx=0…(3)
    e^{-y}+e^y>0
    だから(2)の両辺をe^{-y}+e-yで割ると
    cosx=0
    だから
    x=2nπ±π/2…(4)
    これを(2)に代入すると
    (e^{-y}-e^y)sin(2nπ±π/2)=0
    ↓sin(2nπ±π/2)=±1だから両辺をsin(2nπ±π/2)で割ると
    e^{-y}-e^y=0
    両辺にe^yを加えると
    e^{-y}=e^y
    両辺にe^yをかけると
    1=e^{2y}
    両辺のlogをとると
    0=log1=2y
    左右を入れ替えると
    2y=0
    両辺を2で割ると
    y=0
    これを(1)に代入すると
    z=x
    だから
    zは実数であるから
    zが虚数である事に矛盾するから
    cos(z)≠0
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-1]






Mode/  Pass/

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

- Child Tree -
Edit By 数学ナビゲーター