数学ナビゲーター掲示板

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

■ 過去ログ検索の勧め⇒ここを読んでみてください
google検索

 
この掲示板の過去ログをgoogleで検索します。
検索条件:
現在のログを検索過去のログを検索
■ 2006/2/20より、累計:、本日:、昨日:
数式の記述方法
TeX入力ができます。 \[ TeX形式数式 \] あるいは,$ TeX形式数式 $ で数式を記述します。
 TeX形式数式には半角英数字のみです。詳しくは、ここを見てください。文字化けが発生したときはここを見てください。
■ 質問をする方は、回答者に失礼のないようにお願いします。
携帯電話でこの掲示板を見れるようにしました。⇒ここを見てください。
■ 24時間以内に作成されたスレッドは New で表示されます。
■ 24時間以内に更新されたスレッドは UpDate で表示されます。

記事リスト ( )内の数字はレス数
UpDateベクトルについて。(1) | Nomalベクトルについて。(0) | Nomalベクトル解析(1) | Nomal線形代数 証明(0) | Nomalベクトル解析のスカラー場について(2) | Nomalフーリエ展開とフーリエ変換(0) | Nomal加速度の次元と速度の次元(1) | Nomal弘前大学 2010年度 理系 過去問です。(1) | Nomal第2可算公理(0) | Nomalフェルマーの最終定理の簡単な証明9(25) | Nomal線形代数(0) | Nomal確率論 幾何分布(0) | Nomal大学数学 確率論(0) | Nomal線形代数 行列(0) | Nomal無限和(2) | Nomal大学一年 線形代数(1) | Nomal大学で出された行列の課題がわかりません。(1) | Nomal広義積分(0) | Nomal 至急この問題を解説していただきたいです(0) | Nomal有理数(1) | Nomal論理関数(0) | Nomal正規分布(0) | Nomal問題を解いた物を送ってください(0) | Nomal陰関数の問題(0) | Nomal最小費用流問題(0) | Nomalこの問題分かりません(0) | Nomal整数解(2) | Nomal数列の一般項(2) | Nomal統計学 二項分布(0) | Nomal連立微分方程式(1) | Nomal連立方程式(3) | Nomal全ての 整数解 等(0) | Nomal解析学(2) | Nomal行列のn乗(1) | Nomal色々な方法 で(0) | Nomal初期値問題(1) | Nomal解析学(1) | Nomal統計学 確率密度関数 分布関数 確率(0) | Nomal統計学についての質問(3) | Nomal対数尤度関数について!(0) | Nomal関数について(0) | Nomal最小公倍数とはちがいますが。。(2) | Nomal論理を教えて下さい(12) | Nomal三次方程式(2) | Nomal消火栓からの流量を何立米/sにしたら良いのでしようか?水理学、流体力学(2) | Nomal線形代数(0) | Nomal極限(0) | Nomalボルスク・ウラムの定理の証明(0) | Nomalなぜ2乗? 内積の意味は??(4) | Nomal素数(0) | Nomalデルタ関数に関する問題(0) | Nomal正三角形と半円(2) | Nomal不等式(2) | Nomal漸化式(0) | Nomal確率における情報(17) | Nomal統計学の質問(0) | Nomal確率変数(0) | Nomal複数の点によって構成される多角形を相互の距離情報から類推する方法(6) | Nomal正射影再び(笑)(4) | Nomal正射影:正三角形→2等辺三角形(2) | Nomal球面上の2つの円の重なっている部分の面積(0) | Nomal三角法(0) | Nomal大学数学です(0) | Nomal三角形(2) | Nomal数列の疑問(2) | Nomal素数積の評価〜ベルトラン・チェビシェフの定理(5) | Nomaleの極限(2) | Nomal積分(0) | Nomal四角形の極限(2) | Nomalベルトラン・チェビシェフの定理について。(2) | Nomalcosの積分の評価(0) | Nomal動点の確率(2) | Nomalsinの不等式(4) | Nomal極大と変曲(4) | Nomalピタゴラスの定理の簡単な証明(3) | Nomal複素積分の絶対値の評価(2) | Nomalリーマン積分可能性(3) | Nomalデデキントの切断による実数の構成(0) | Nomalベルトラン・チェビチェフの定理について。(0) | Nomalガウスの発散定理(0) | Nomal数列について。(0) | Nomal(1-x)^(-2)の展開式(2) | Nomal線形代数(0) | Nomal京大特色(1) | Nomal高校の範囲での証明(2) | Nomalこの表の見方を教えてください。(0) | Nomalヒルベルト空間(0) | Nomal$D_n$加群のフーリエ変換と関数のフーリエ変換との関係について(0) | Nomal群の問題(5) | Nomal合同式の計算(2) | Nomalプログラミング言語BASIC言語について。(14) | Nomal統計/区画幅について(3) | Nomal2変数関数の極値条件(2) | Nomal素数生成法について(0) | Nomalsupreme 偽物(0) | Nomal合同式の計算(4) | Nomal縦曲線について(0) | Nomal銃曲線における計画高ついて(0) | Nomal測量学について(0) | Nomal訂正です(1) |



■記事リスト / ▼下のスレッド
■48774 / 親記事)  一次不等式で表される領域の面積
□投稿者/ モウフィス 一般人(1回)-(2018/08/31(Fri) 18:56:52)
    a,b,c,d,p,qは実数で、|ad-bc|=|pq|≠0をみたしている。
    xy平面上において|ax+by|≦|p|かつ|cx+dy|≦|q|をみたす
    点(x,y)全体からなる領域の面積を求めよ。

    教えて下さい。よろしくお願いします。
引用返信/返信 [メール受信/OFF]

▽[全レス2件(ResNo.1-2 表示)]
■48779 / ResNo.1)  Re[1]: 一次不等式で表される領域の面積
□投稿者/ らすかる 一般人(5回)-(2018/08/31(Fri) 22:36:58)
    しっかり考えていませんのであまり自信がありませんが

    直線ax+by±p=0と原点との距離は
    点と直線の距離の公式により|p|/√(a^2+b^2)
    直線cx+dy±q=0と原点との距離は同様に|q|/√(c^2+d^2)
    cos(2直線のなす角)=|ac+bd|/{√(a^2+b^2)・√(c^2+d^2)}
    sin(2直線のなす角)=√{1-(ac+bd)^2/{(a^2+b^2)(c^2+d^2)}}
    =|ad-bc|/√{(a^2+b^2)(c^2+d^2)}
    なので、求める面積は
    2|p|/√(a^2+b^2)×2|q|/√(c^2+d^2)÷|ad-bc|/√{(a^2+b^2)(c^2+d^2)}
    =4|pq/(ad-bc)|

引用返信/返信 [メール受信/OFF]
■48784 / ResNo.2)  Re[2]: 一次不等式で表される領域の面積
□投稿者/ モウフィス 一般人(2回)-(2018/09/01(Sat) 20:53:59)
    4、ということですね。
    有難うございました。
解決済み!
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-2]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■48781 / 親記事)  管理人さんへ
□投稿者/ らすかる 一般人(7回)-(2018/08/31(Fri) 23:04:01)
    この膨大な迷惑記事を防ぐのには、
    「http」を禁止文字列にするのが簡単でよいと思います。
    リンクは書き込めなくなりますので、
    書き込みたい場合はhを抜いてもらうなどが必要になりますが、
    迷惑記事はほぼなくなると思います。
引用返信/返信 [メール受信/OFF]

▽[全レス1件(ResNo.1-1 表示)]
■48783 / ResNo.1)  Re[1]: 管理人さんへ
□投稿者/ 管理人 一般人(1回)-(2018/08/31(Fri) 23:45:19)
    らすかるさん
    アドバイスありがとうございます。
    とりあえず、httpを禁止文字列に登録しました。
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-1]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■48731 / 親記事)  判別式
□投稿者/ 男子400mリレー 一般人(1回)-(2018/08/29(Wed) 22:00:59)
    x^2+y^2≠0をみたす任意の実数x,yに対して、常に
    x^2+y^2≠(ax+by)^2+(cx+dy)^2
    が成り立つための実数a,b,c,dに関する必要十分条件を
    α:=ad-bc, β:=a^2+b^2+c^2+d^2
    を用いて表せ。

    この問題なのですが、たぶん二次方程式の判別式を使うだけだとは思うのですが、
    二次の係数が0かそうでないかで場合分けしているうちによく分からなくなってしまいました。
    詳しく教えていただけると助かります。よろしくお願いします。
引用返信/返信 [メール受信/OFF]

▽[全レス2件(ResNo.1-2 表示)]
■48733 / ResNo.1)  Re[1]: 判別式
□投稿者/ らすかる 一般人(4回)-(2018/08/29(Wed) 22:57:16)
    (a^2+c^2-1)x^2+2(ab+cd)xy+(b^2+d^2-1)y^2≠0
    y=0のときにx≠0である解を持たないためにはa^2+c^2-1≠0が必要。
    よって常にxの二次式と考えてよい。
    D/4={(ab+cd)y}^2-(a^2+c^2-1)(b^2+d^2-1)y^2
    ={(ab+cd)^2-(a^2+c^2-1)(b^2+d^2-1)}y^2
    =(β-α^2-1)y^2
    y≠0,β-α^2-1<0のとき解を持たないが、
    β-α^2-1<0すなわち
    (ab+cd)^2-(a^2+c^2-1)(b^2+d^2-1)<0
    ならば
    (ab+cd)^2<(a^2+c^2-1)(b^2+d^2-1)
    なのでa^2+c^2-1≠0も成り立ち、
    y=0のときも条件を満たす。
    よって求める必要十分条件はβ-α^2-1<0。

引用返信/返信 [メール受信/OFF]
■48746 / ResNo.2)  Re[2]: 判別式
□投稿者/ 男子400mリレー 一般人(2回)-(2018/08/30(Thu) 11:50:09)
    思っていたより複雑でした
    ありがとうございました
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-2]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■48620 / 親記事)  数列の周期と初項
□投稿者/ ミヤゾンちえみ 一般人(1回)-(2018/08/26(Sun) 19:13:33)
    数列{a[n]}は、初項a[1]が有理数で、
    全てのn≧1に対して
    a[n+1]=a[n]^2 -29/16
    という関係を満たしています。
    以下の条件をみたす初項a[1](有理数)を全て知りたいです(求め方も)。
    条件:ある自然数kとpが存在して、
    任意のn≧kに対して
    a[n]=a[n+p]
    が成り立つ。

    よろしくお願いします。
引用返信/返信 [メール受信/OFF]

▽[全レス2件(ResNo.1-2 表示)]
■48708 / ResNo.1)  Re[1]: 数列の周期と初項
□投稿者/ らすかる 一般人(2回)-(2018/08/28(Tue) 09:52:37)
    a[1]=u/v(uとvは互いに素な整数でv>0)とします。
    もしvが奇素数を素因数に持つと、数列の分母は
    増加し続けますので、条件を満たしません。
    もしv=2^m(m≧3)とすると、やはり数列の分母が
    増加し続けますので、条件を満たしません。
    もしv=2またはv=1とするとa[2]の分母が16となり、同様に
    数列の分母が増加し続けますので、条件を満たしません。
    従ってv=4です。
    2^2-29/16=35/16>2から
    |a[n]|≧2のときa[n+1]>|a[n]|で数列が増加し続けますので、
    |a[1]|<2に限定されます。
    よってa[1]の候補は±1/4,±3/4,±5/4,±7/4に限定されます。
    また上記からわかるように、数列の途中で分母が4以外になると
    条件を満たさなくなります。
    |a[n]|=1/4のとき
    a[n+1]=1/16-29/16=-7/4
    |a[n]|=3/4のとき
    a[n+1]=9/16-29/16=-5/4
    |a[n]|=5/4のとき
    a[n+1]=25/16-29/16=-1/4
    |a[n]|=7/4のとき
    a[n+1]=49/16-29/16=5/4
    ですから、a[1]=±1/4,±3/4,±5/4,±7/4であれば
    この範囲内の値しかとりませんので、必ず循環して条件を満たします。
    従って条件を満たす初項a[1]は
    ±1/4,±3/4,±5/4,±7/4となります。

引用返信/返信 [メール受信/OFF]
■48727 / ResNo.2)  Re[2]: 数列の周期と初項
□投稿者/ ミヤゾンちえみ 一般人(3回)-(2018/08/29(Wed) 10:17:12)
    有難うございます!
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-2]



■記事リスト / ▲上のスレッド
■48702 / 親記事)  近似式
□投稿者/ waka 一般人(1回)-(2018/08/28(Tue) 08:28:32)
    数Bの近似式で
    関数f(x)のx=aにおける微分係数f'(a)は
      f'(a)=lim[h→0](f(a+h)-f(a))/h
    であるから、|h|が十分0に近いとき
       f'(a)≒(f(a+h)-f(a))/h

    とあります。どうして|h|が十分0に近いときlim[h→0]がなくなるのですか。
     
引用返信/返信 [メール受信/OFF]

▽[全レス2件(ResNo.1-2 表示)]
■48704 / ResNo.1)  Re[1]: 近似式
□投稿者/ らすかる 一般人(1回)-(2018/08/28(Tue) 08:47:14)
    |h|が十分0に近いときlim[h→0]がなくなるわけではありません。
    |h|が十分0に近く、かつ「=」を「≒」に変えた場合に
    lim[h→0」をなくすことができます。
引用返信/返信 [メール受信/OFF]
■48723 / ResNo.2)  Re[2]: 近似式
□投稿者/ waka 一般人(2回)-(2018/08/28(Tue) 14:33:10)
    No48704に返信(らすかるさんの記事)
    > |h|が十分0に近いときlim[h→0]がなくなるわけではありません。
    > |h|が十分0に近く、かつ「=」を「≒」に変えた場合に
    > lim[h→0」をなくすことができます。

    ありがとうございました。
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-2]






Mode/  Pass/

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

- Child Tree -
Edit By 数学ナビゲーター