数学ナビゲーター掲示板

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

■ 過去ログ検索の勧め⇒ここを読んでみてください
google検索

 
この掲示板の過去ログをgoogleで検索します。
検索条件:
現在のログを検索過去のログを検索
■ 2006/2/20より、累計:、本日:、昨日:
数式の記述方法
TeX入力ができます。 \[ TeX形式数式 \] あるいは,$ TeX形式数式 $ で数式を記述します。
 TeX形式数式には半角英数字のみです。詳しくは、ここを見てください。文字化けが発生したときはここを見てください。
■ 質問をする方は、回答者に失礼のないようにお願いします。
携帯電話でこの掲示板を見れるようにしました。⇒ここを見てください。
■ 24時間以内に作成されたスレッドは New で表示されます。
■ 24時間以内に更新されたスレッドは UpDate で表示されます。

記事リスト ( )内の数字はレス数
Nomalプログラミング言語BASIC言語について。(14) | Nomal統計/区画幅について(3) | Nomal2変数関数の極値条件(2) | Nomal素数生成法について(0) | Nomalsupreme 偽物(0) | Nomal合同式の計算(4) | Nomal縦曲線について(0) | Nomal銃曲線における計画高ついて(0) | Nomal測量学について(0) | Nomal訂正です(1) | Nomal対数の取り方、シグモイド、ロジスティック関数(0) | Nomal緩和曲線の開始位置と終了地点および途中の高さxについて(0) | Nomalf'(x) の増減の判定方法(3) | Nomal三角形と内接円について改(1) | Nomal三角形と内接円について。(1) | Nomal増減表の作り方(6) | Nomal4次関数(3) | Nomal約数を mod 13 で見る(1) | Nomal三葉曲線の長さについて(2) | Nomal自作問題(3) | Nomalフェルマーの最終定理の簡単な証明9(23) | Nomal(削除)(0) | Nomalケプラー方程式による惑星の会合計算(0) | Nomal追いかけ算 惑星会合時期(1) | Nomal担当者の時間割(2) | Nomal三次関数と長方形(4) | Nomal(削除)(0) | Nomal屑スレを下げるための問題(2) | Nomal3次関数について。(8) | Nomal必要十分条件の証明(3) | Nomalフェルマーの最終定理の簡単な証明8(74) | Nomal合コン(4) | Nomal基本的な確率(2) | Nomal同型写像(0) | Nomal正2n角形と確率(4) | Nomal中学生でも解けそうな入試問題001(1) | Nomalご教示ください(5) | Nomal階段行列の作り方(4) | Nomal統計学の問題です(0) | Nomal3の倍数(4) | Nomalラプラス方程式 境界条件(0) | Nomal対偶について(8) | Nomal偶数と奇数(8) | Nomalsinの関係(2) | Nomal2^(1/3)とωと√3(4) | Nomal supreme コート(0) | Nomalフェルマーの最終定理の簡単な証明7(101) | Nomal目的の形への行列の三角化(2) | Nomal(削除)(2) | Nomal等角写像の問題です。(2) | Nomal掲示板について。(1) | Nomalフェルマーの定理 RSA暗号(1) | Nomalフェルマーの最終定理の簡単な証明6(101) | Nomalオイラーの公式(3) | Nomalグッチンコピー(0) | Nomal6次方程式(2) | Nomalベクトル解析 証明(0) | Nomal位相数学、位相空間(0) | Nomal実生活に活きる確率(0) | Nomalオイラーの公式 導関数の定義(2) | Nomalオイラーの公式(3) | Nomal2階常微分方程式 (1) | Nomalオイラーの公式(0) | Nomalフェルマーの最終定理の簡単な証明5(101) | Nomal数学について。(1) | Nomal順列(4) | Nomal線形代数(1) | Nomal整数問題(1) | Nomalフェルマーの最終定理の簡単な証明4(101) | Nomal大小の比較(7) | Nomalシミュレーションについて(1) | Nomal期待値(2) | Nomal数学について。(1) | Nomalフーリエ変換の求め方(1) | Nomalisometric matrix,p-ノルムについて(0) | Nomalフェルマーの最終定理の簡単な証明3(76) | Nomald(cos^2θ)/dθ=と置けるような相似の図を見つけたいです!(0) | Nomal1/ cos^2θの微分を画像の図を用いて解きたい!(0) | Nomalラグランジュの剰余項(1) | Nomallog2とマクローリン展開についての証明(1) | Nomal極限を求める(大学数学)(1) | Nomal三角方程式(2) | Nomal確率密度(2) | Nomal方程式(2) | Nomal多項式の係数(1) | Nomalフェルマーの最終定理の簡単な証明2(101) | Nomal複素平面上の領域について(0) | Nomal数学検定について。(0) | Nomal複素解析(2) | Nomal定積分と体積(1) | Nomal極限値(3) | Nomal複素解析(7) | Nomalフェルマーの最終定理の簡単な証明(101) | Nomal高校推論の問題(1) | Nomal漸化式の項を減らす(4) | Nomalカーリングの7試合とは(4) | Nomal(削除)(3) | Nomalたぶん三角関数の等式(6) | Nomal確率、期待値の計算(0) | Nomal数学オリンピックの幾何の問題(2) |



■記事リスト / ▼下のスレッド
■49022 / 親記事)  統計について。
□投稿者/ コルム 一般人(46回)-(2019/02/17(Sun) 17:02:38)
    次の問題がわかりません。教えていただけると幸いです。助けていただけると幸いです。
508×716 => 177×250

IMG_20190217_165845_961.JPG
/82KB
引用返信/返信 [メール受信/OFF]

▽[全レス4件(ResNo.1-4 表示)]
■49023 / ResNo.1)  Re[1]: 統計について。
□投稿者/ コルム 一般人(47回)-(2019/02/17(Sun) 17:05:50)
    次の問題がわかりません。教えていただけると幸いです。解答です。
417×498 => 209×250

IMG_20190217_170428_394.JPG
/59KB
引用返信/返信 [メール受信/OFF]
■49024 / ResNo.2)  Re[1]: 統計について。
□投稿者/ コルム 一般人(48回)-(2019/02/17(Sun) 17:07:20)
    解答です。
416×223 => 250×134

IMG_20190217_170452_831.JPG
/18KB
引用返信/返信 [メール受信/OFF]
■49025 / ResNo.3)  Re[1]: 統計について。
□投稿者/ コルム 一般人(49回)-(2019/02/17(Sun) 20:43:10)
    この4問はどうなっているのでしょうか?教えていただけると幸いです。
820×322 => 250×98

IMG_20190217_204254_667.JPG
/52KB
引用返信/返信 [メール受信/OFF]
■49026 / ResNo.4)  Re[1]: 統計について。
□投稿者/ 菩菩紙御炉 一般人(3回)-(2019/02/19(Tue) 07:39:06)
    マルチポスト先の
    ttps://oshiete.goo.ne.jp/qa/10984663.html


    > 自分でちゃんと勉強して解いてみようという気がないのですね。

    と気合いを入れられているのだから、底で頑張ってくれ(wwwwwww

引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-4]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■49020 / 親記事)  整数解
□投稿者/ q 一般人(1回)-(2019/02/13(Wed) 21:52:58)
    5 x^2-2 x y-16 x-4 y^2-18 y+2=0    の 整数解を全て 是非求めて下さい;
引用返信/返信 [メール受信/OFF]

▽[全レス1件(ResNo.1-1 表示)]
■49021 / ResNo.1)  Re[1]: 整数解
□投稿者/ mo 一般人(2回)-(2019/02/15(Fri) 23:46:46)
    (2,5),(-20,27),(20,29),(34,27)の4つ
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-1]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■49016 / 親記事)  ベクトルについて。
□投稿者/ コルム 一般人(43回)-(2019/02/09(Sat) 16:30:03)
    次の問題がわかりません。助けていただけると幸いです。教えていただけると幸いです。
584×276 => 250×118

1549697403.png
/54KB
引用返信/返信 [メール受信/OFF]

▽[全レス1件(ResNo.1-1 表示)]
■49017 / ResNo.1)  Re[1]: ベクトルについて。
□投稿者/ muturajcp 付き人(52回)-(2019/02/10(Sun) 20:38:31)
    |↑a-↑b|^2=|↑a|^2+|↑b|^2-2(↑a,↑b)
    ↓両辺に2(↑a,↑b)-|↑a-↑b|^2を加えると
    2(↑a,↑b)=|↑a|^2+|↑b|^2-|↑a-↑b|^2
    ↓|↑a|=|↑b|=2
    ↓|↑a-↑b|=2√3
    ↓だから
    2(↑a,↑b)=2^2+2^2-12=4+4-12=-4
    ↓両辺を2で割ると
    (↑a,↑b)=-2

    |↑a+↑b|^2=|↑a|^2+|↑b|^2+2(↑a,↑b)
    ↓|↑a|=|↑b|=2
    ↓(↑a,↑b)=-2
    ↓だから
    |↑a+↑b|^2=2^2+2^2+2(-2)=4
    ↓両辺を1/2乗すると
    |↑a+↑b|=2

    ↑pと↑a+↑bの角をtとすると
    {(↑a+↑b)・↑p}=|↑a+↑b||↑p|cost
    ↓|↑a+↑b|=2
    ↓だから
    {(↑a+↑b)・↑p}=2|↑p|cost

    (↑p-↑a)・(↑p-↑b)=0
    ↓(↑p-↑a)・(↑p-↑b)=|↑p|^2-{(↑a+↑b)・↑p}+(↑a・↑b)
    ↓だから
    |↑p|^2-{(↑a+↑b)・↑p}+(↑a・↑b)=0
    ↓(↑a,↑b)=-2だから
    |↑p|^2-{(↑a+↑b)・↑p}-2=0
    ↓{(↑a+↑b)・↑p}=2|↑p|cost
    ↓だから
    |↑p|^2-(2|↑p|cost)-2=0
    (|↑p|-cost)^2-(cost)^2-2=0
    ↓両辺に2+(cost)^2を加えると
    (|↑p|-cost)^2=2+(cost)^2
    ↓両辺を1/2乗すると
    |↑p|-cost=±√{2+(cost)^2}
    ↓両辺にcostを加えると
    |↑p|=cost±√{2+(cost)^2}
    ↓cost≦√{2+(cost)^2},|↑p|≧0だから
    |↑p|=cost+√{2+(cost)^2}
    t=0の時
    ↑p={(1+√3)/2}(↑a+↑b)
    の時
    |↑p|の最大値1+√3
    t=πの時
    ↑p={(1-√3)/2}(↑a+↑b)
    の時
    |↑p|の最小値-1+√3
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-1]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■49013 / 親記事)  ベクトルについて。
□投稿者/ コルム 一般人(41回)-(2019/02/05(Tue) 17:01:12)
    次の問題がわかりません。助けていただけると幸いです。
721×366 => 250×126

1549353672.png
/56KB
引用返信/返信 [メール受信/OFF]

▽[全レス1件(ResNo.1-1 表示)]
■49015 / ResNo.1)  Re[1]: ベクトルについて。
□投稿者/ 菩菩紙御炉 一般人(1回)-(2019/02/06(Wed) 04:05:22)
    マルチポスト先の

    ttps://oshiete.goo.ne.jp/qa/10964419.html

    で回答されている。

引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-1]



■記事リスト / ▲上のスレッド
■49007 / 親記事)  確率
□投稿者/ 桜貝 一般人(1回)-(2019/01/31(Thu) 19:14:23)
    奇数個のさいころを投げるとき、出た目の平方の和が3の倍数となる確率を求めよ。

    教えて下さい。
引用返信/返信 [メール受信/OFF]

▽[全レス2件(ResNo.1-2 表示)]
■49008 / ResNo.1)  Re[1]: 確率
□投稿者/ らすかる 一般人(1回)-(2019/01/31(Thu) 20:35:49)
    2n-1個のときに平方の和が3の倍数となる確率をp[n],
    平方の和を3で割って1余る確率をq[n]とすると
    p[1]=1/3
    p[n+1]=(1/9)p[n]+(4/9)q[n]+(4/9)(1-p[n]-q[n])
    =(4-3p[n])/9
    これを解いて p[n]=1/3
    従って求める確率は 1/3

引用返信/返信 [メール受信/OFF]
■49014 / ResNo.2)  Re[2]: 確率
□投稿者/ 桜貝 一般人(2回)-(2019/02/05(Tue) 19:30:00)
    有難うございました。
    とてもよく分かりました。
解決済み!
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-2]






Mode/  Pass/

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

- Child Tree -
Edit By 数学ナビゲーター