数学ナビゲーター掲示板

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

■ 過去ログ検索の勧め⇒ここを読んでみてください
google検索

 
この掲示板の過去ログをgoogleで検索します。
検索条件:
現在のログを検索過去のログを検索
■ 2006/2/20より、累計:、本日:、昨日:
数式の記述方法
TeX入力ができます。 \[ TeX形式数式 \] あるいは,$ TeX形式数式 $ で数式を記述します。
 TeX形式数式には半角英数字のみです。詳しくは、ここを見てください。文字化けが発生したときはここを見てください。
■ 質問をする方は、回答者に失礼のないようにお願いします。
携帯電話でこの掲示板を見れるようにしました。⇒ここを見てください。
■ 24時間以内に作成されたスレッドは New で表示されます。
■ 24時間以内に更新されたスレッドは UpDate で表示されます。

記事リスト ( )内の数字はレス数
Nomalsupreme 偽物(0) | Nomalフェルマーの最終定理の簡単な証明9(22) | Nomal(削除)(0) | Nomalケプラー方程式による惑星の会合計算(0) | Nomal追いかけ算 惑星会合時期(1) | Nomal担当者の時間割(2) | Nomal三次関数と長方形(4) | Nomal(削除)(0) | Nomal屑スレを下げるための問題(2) | Nomal3次関数について。(8) | Nomal必要十分条件の証明(3) | Nomalフェルマーの最終定理の簡単な証明8(74) | Nomal合コン(4) | Nomal基本的な確率(2) | Nomal同型写像(0) | Nomal正2n角形と確率(4) | Nomal中学生でも解けそうな入試問題001(1) | Nomalご教示ください(5) | Nomal階段行列の作り方(4) | Nomal統計学の問題です(0) | Nomal3の倍数(4) | Nomalラプラス方程式 境界条件(0) | Nomal対偶について(8) | Nomal偶数と奇数(8) | Nomalsinの関係(2) | Nomal2^(1/3)とωと√3(4) | Nomal supreme コート(0) | Nomalフェルマーの最終定理の簡単な証明7(101) | Nomal目的の形への行列の三角化(2) | Nomal(削除)(2) | Nomal等角写像の問題です。(2) | Nomal掲示板について。(1) | Nomalフェルマーの定理 RSA暗号(1) | Nomalフェルマーの最終定理の簡単な証明6(101) | Nomalオイラーの公式(3) | Nomalグッチンコピー(0) | Nomal6次方程式(2) | Nomalベクトル解析 証明(0) | Nomal位相数学、位相空間(0) | Nomal実生活に活きる確率(0) | Nomalオイラーの公式 導関数の定義(2) | Nomalオイラーの公式(3) | Nomal2階常微分方程式 (1) | Nomalオイラーの公式(0) | Nomalフェルマーの最終定理の簡単な証明5(101) | Nomal数学について。(1) | Nomal順列(4) | Nomal線形代数(1) | Nomal整数問題(1) | Nomalフェルマーの最終定理の簡単な証明4(101) | Nomal大小の比較(7) | Nomalシミュレーションについて(1) | Nomal期待値(2) | Nomal数学について。(1) | Nomalフーリエ変換の求め方(1) | Nomalisometric matrix,p-ノルムについて(0) | Nomalフェルマーの最終定理の簡単な証明3(76) | Nomald(cos^2θ)/dθ=と置けるような相似の図を見つけたいです!(0) | Nomal1/ cos^2θの微分を画像の図を用いて解きたい!(0) | Nomalラグランジュの剰余項(1) | Nomallog2とマクローリン展開についての証明(1) | Nomal極限を求める(大学数学)(1) | Nomal三角方程式(2) | Nomal確率密度(2) | Nomal方程式(2) | Nomal多項式の係数(1) | Nomalフェルマーの最終定理の簡単な証明2(101) | Nomal複素平面上の領域について(0) | Nomal数学検定について。(0) | Nomal複素解析(2) | Nomal定積分と体積(1) | Nomal極限値(3) | Nomal複素解析(7) | Nomalフェルマーの最終定理の簡単な証明(101) | Nomal高校推論の問題(1) | Nomal漸化式の項を減らす(4) | Nomalカーリングの7試合とは(4) | Nomal(削除)(3) | Nomalたぶん三角関数の等式(6) | Nomal確率、期待値の計算(0) | Nomal数学オリンピックの幾何の問題(2) | Nomal確率について。(1) | Nomal自然数の方程式(2) | Nomal単調増加数列(2) | Nomal数学について。(1) | Nomal平面図形について。(2) | Nomal平面図形について。(1) | Nomal確率について。(4) | Nomal確率について。(1) | Nomal確率について。(4) | Nomal確率について。(2) | Nomal統計について。(4) | Nomal整数解(1) | Nomalベクトルについて。(1) | Nomalベクトルについて。(1) | Nomal確率(2) | Nomal箱ひげ図(2) | Nomalベクトルについて。(2) | Nomal【緊急】中2数学の証明(2) | Nomalε-N論法を使った極限の証明(1) |



■記事リスト / ▼下のスレッド
■49121 / 親記事)  数学オリンピックの幾何の問題
□投稿者/ モノトーン 一般人(1回)-(2019/03/31(Sun) 08:22:50)
    ∠ABC=90°である三角形ABCの辺BC,CA,AB上に点P,Q,Rがあり、AQ:QC=2:1,AR=AQ,QP=QR,∠PQR=90°が成立している。CP=1のときARを求めよ。
    【JMO2011予選の問題】

    上記の問題について、幾何的な解法は理解できましたが、座標平面を導入し、代数的に解けないか考えてみました。

    A(3a,0),B(0,0),C(0,3c),R(r,0)とおく。ただし、a>0,c>1/3,0<r<aとする。
    また、与えられた条件より,P(0,3c-1)Q(a,2c)となる。

    AQ=ARより → 二点間の距離(計算略)→ 5a^2-4c^2-6ar+r^2=0
    PQ=QRより → 二点間の距離(計算略)→ 3c^2+2c-2ar+r^2=1
    PQ⊥RQより → 内積=0(計算略)→ a^2-ar-2c^2+2c=0

    という感じで、連立方程式を解く(正確にはrの値を求める)という方針を立てたのですが
    なかなかここから進みません。どなたかもし上手い方法があればご教授願います。よろしくお願いいたしますm(__)m


引用返信/返信 [メール受信/OFF]

▽[全レス2件(ResNo.1-2 表示)]
■49122 / ResNo.1)  Re[1]: 数学オリンピックの幾何の問題
□投稿者/ らすかる 一般人(6回)-(2019/03/31(Sun) 11:20:42)
    5a^2-4c^2-6ar+r^2=0 … (1)
    3c^2+2c-2ar+r^2=1 … (2)
    a^2-ar-2c^2+2c=0 … (3)

    (2)×2+(3)×5-(1)をcについて整理して
    c=-(r^2-3ar-2)/14 … (4)
    (4)を(1)に代入して整理すると
    (245-9r^2)a^2+6r(r^2-51)a-(r^4-53r^2+4)=0 … (5)
    (4)を(3)に代入して整理すると
    (98-9r^2)a^2+2r(3r^2-34)a-(r^4+10r^2-24)=0 … (6)
    (5)×(98-9r^2)-(6)×(245-9r^2)をaについて整理して
    a=(15r^4-282r^2+224)/{(45r^2-476)r} … (7)
    (7)を(5)に代入して整理すると
    (r^2+1)(5r^2-20r+16)(5r^2+20r+16)(9r^2-245)=0
    よって正の実数解は
    r=2(5±√5)/5,7√5/3
    この解と(7)と(4)からa,cを求めると
    r=7√5/3のときa=14129√5/33705,c=-5080/6741<0となり不適
    r=2(5-√5)/5のときa=2(5-2√5)/5,c=(5-2√5)/5<1/3となり不適
    r=2(5+√5)/5のときa=2(5+2√5)/5,c=(5+2√5)/5>1/3となり適
    従って求める答えは 3a-r={6(5+2√5)-2(5+√5)}/5=4+2√5

引用返信/返信 [メール受信/OFF]
■49123 / ResNo.2)  Re[2]: 数学オリンピックの幾何の問題
□投稿者/ モノトーン 一般人(4回)-(2019/03/31(Sun) 11:30:56)
    さっそくのご返事ありがとうございます!
    こんなに煩雑に過程になるのですね…
    ここまでの計算量があるものを対応いただき、ありがとうございましたm(__)m
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-2]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■49038 / 親記事)  確率について。
□投稿者/ コルム 付き人(60回)-(2019/03/04(Mon) 18:28:05)
    次の、35,36がわかりません。教えていただけると幸いです。
908×549 => 250×151

IMG_20190304_182609_785.JPG
/78KB
引用返信/返信 [メール受信/OFF]

▽[全レス1件(ResNo.1-1 表示)]
■49089 / ResNo.1)  Re[1]: 確率について。
□投稿者/ muturajcp 付き人(74回)-(2019/03/26(Tue) 11:27:58)
    35.
    4枚の硬貨を同時に投げる試行を4回繰り返すとき,
    2枚が表で2枚が裏となる回数をXとする.
    2枚が表で2枚が裏となる確率は
    4C2(1/2)^2(1/2)^2=3/8
    だから
    2枚が表で2枚が裏とならない確率は
    1-3/8=5/8
    だから
    4回とも2枚が表で2枚が裏とならない確率は
    P(X=0)=(5/8)^4
    1回だけ2枚が表で2枚が裏となる確率は
    P(X=1)=4(3/8)(5/8)^3
    2回だけ2枚が表で2枚が裏となる確率は
    P(X=2)=4C2(3/8)^2(5/8)^2
    3回だけ2枚が表で2枚が裏となる確率は
    P(X=3)=4(5/8)(3/8)^3
    4回とも2枚が表で2枚が裏となる確率は
    P(X=4)=(3/8)^4

    Xの平均値は
    EX
    =Σ_{k=1〜4}kP(X=k)
    =Σ_{k=1〜4}k(4Ck){(3/8)^k}(5/8)^(4-k)
    =4(3/8)(5/8)^3+2*4C2(3/8)^2(5/8)^2+3*4(5/8)(3/8)^3+4*(3/8)^4
    =4(3/8){(5/8)^3+3(3/8)(5/8)^2+3(5/8)(3/8)^2+(3/8)^3}
    =4(3/8)
    =3/2

    Xの分散は
    V[X]
    =E[X-EX]^2
    =E[X^2]-(EX)^2
    =Σ_{k=1〜4}k^2P(X=k)-(EX)^2
    =Σ_{k=1〜4}k^2(4Ck){(3/8)^k}(5/8)^(4-k)-(EX)^2
    =Σ_{k=2〜4}k(k-1)(4Ck){(3/8)^k}(5/8)^(4-k)+Σ_{k=1〜4}k(4Ck){(3/8)^k}(5/8)^(4-k)-(EX)^2
    =4*3(3/8)^2Σ_{k=2〜4}2/{(k-2)!(4-k)!}{(3/8)^(k-2)}(5/8)^(4-k)+EX-(EX)^2
    =4*3(3/8)^2{(5/8)^(2)+2(3/8)(5/8)+(3/8)^2}+EX-(EX)^2
    =4*3(3/8)^2+EX-(EX)^2
    =4*3(3/8)^2+3/2-(3/2)^2
    =(3/2){3(3/8)+1-3/2}
    =(3/2)(9/8-1/2)
    =(3/2)(5/8)
    =15/16
    だから
    Xの標準偏差は
    √(V[X])=√(15/16)=(√15)/4

    36.
    AとBの2人があるゲームを繰り返し行い,先に4勝した方を優勝とする.
    1回ごとのゲームでAが勝つ確率が1/3,Bが勝つ確率が2/3のとき
    (1)
    ちょうど6回目のゲームでAが優勝する確率は
    5回目までAが3勝,Bが2勝し,6回目にAが勝つ確率だから
    5C2(1/3)^3(2/3)^2*(1/3)=40/3^6
    =40/729

    (2)
    どちらかが優勝するまでに必要なゲームの回数をXとすると
    Aが4勝0敗又はBが4勝0敗の確率は
    P(X=4)=(1/3)^4+(2/3)^4=(1+16)/3^4=17/81
    Aが4勝1敗又はBが4勝1敗の確率は
    P(X=5)=4(2/3)(1/3)^4+4(1/3)(2/3)^4=8/3^3=8/27
    Aが4勝2敗又はBが4勝2敗の確率は
    P(X=6)=5C2{(1/3)^4(2/3)^2+(1/3)^2(2/3)^4}=200/729
    6回目でAが3勝Bが3勝の確率は
    P(X=7)=6C3(1/3)^3(2/3)^3=160/729
    17/81+8/27+200/729+160/729=(153+216+200+160)/729=1
    Xの期待値EXは
    EX
    =Σ_{k=4〜7}kP(X=k)
    =4*17/81+5*8/27+6*200/729+7*160/729
    =(4*153+5*216+6*200+7*160)/729
    =(612+1080+1200+1120)/729
    =4012/729
    ≒5.503429355281207
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-1]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■49076 / 親記事)  自然数の方程式
□投稿者/ だんすぱーちー 一般人(1回)-(2019/03/24(Sun) 13:14:45)
    a,b,x,yは自然数で、xはyを割り切る(yはxの倍数である)ものとする。
    さらに、s[1],s[2],s[3],s[4],t[1],t[2],t[3],t[4]を整数として、
    これらが
    as[1]=xt[1]
    bs[2]=xt[2]
    as[3]=yt[3]
    bs[4]=yt[4]
    |s[1]s[4]-s[2]s[3]|=1
    |t[1]t[4]-t[2]t[3]|=1
    を満たしているとする。
    このとき、x,yをa,bを用いて表せ。
    
    この問題の解き方を教えて下さい。
    よろしくお願いします。

引用返信/返信 [メール受信/OFF]

▽[全レス2件(ResNo.1-2 表示)]
■49077 / ResNo.1)  Re[1]: 自然数の方程式
□投稿者/ らすかる 一般人(2回)-(2019/03/24(Sun) 15:05:54)
    aとbの最大公約数をgとしてa=Ag,b=Bgとする。AとBは互いに素。
    as[1]=xt[1], bs[2]=xt[2]から
    Ags[1]=xt[1], Bgs[2]=xt[2]であり
    条件からt[1]とt[2]は互いに素なので、xはgで割り切れる。
    x=zgとおくと、yはxの倍数なのでy=kzgとおける。
    as[1]=xt[1], as[3]=yt[3]から
    Ags[1]=zgt[1], Ags[3]=kzgt[3]すなわち
    As[1]=zt[1], As[3]=kzt[3]
    条件からs[1]とs[3]は互いに素なので、Aはzで割り切れる。
    同様に
    bs[2]=xt[2], bs[4]=yt[4]から
    Bgs[2]=zgt[2], Bgs[4]=kzgt[4]すなわち
    Bs[2]=zt[2], Bs[4]=kzt[4]
    条件からs[2]とs[4]は互いに素なので、Bはzで割り切れる。
    AとBは互いに素なので、z=1。従ってx=gすなわちxはaとbの最大公約数。

    第1式×第4式-第2式×第3式から
    ab(s[1]s[4]-s[2]s[3])=xy(t[1]t[4]-t[2]t[3])
    a,b,x,yは正なので ab=xy
    となるから、y=ab/g=(aとbの最小公倍数)

    従って答えは
    xはaとbの最大公約数
    yはaとbの最小公倍数

引用返信/返信 [メール受信/OFF]
■49082 / ResNo.2)  Re[2]: 自然数の方程式
□投稿者/ だんすぱーちー 一般人(2回)-(2019/03/25(Mon) 01:48:41)
    とてもよく分かりました
    ありがとうございました

引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-2]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■49067 / 親記事)  単調増加数列
□投稿者/ むさし 一般人(1回)-(2019/03/23(Sat) 12:29:23)
    a[1]=1、a[2]=3、a[n+2]=4a[n+1]-a[n] (n≧1)
    で定まる数列a[n]に対し
    b[n]=a[n+1]/a[n]
    とすると、b[n]が単調増加であることを示すには
    どうすればいいのでしょうか?
引用返信/返信 [メール受信/OFF]

▽[全レス2件(ResNo.1-2 表示)]
■49068 / ResNo.1)  Re[1]: 単調増加数列
□投稿者/ らすかる 一般人(1回)-(2019/03/23(Sat) 13:30:08)
    b[n]=a[n+1]/a[n]
    =(4a[n]-a[n-1])/a[n]
    =4-a[n-1]/a[n]
    =4-1/b[n-1]
    b[1]=3<2+√3
    b[n-1]<2+√3のとき
    1/b[n-1]>1/(2+√3)=2-√3
    -1/b[n-1]<-2+√3
    4-1/b[n-1]<2+√3
    ∴b[n]<2+√3
    となるのですべてのnに対しb[n]<2+√3
    また条件から明らかにa[n+1]>a[n]なのでb[n]>1
    よってすべてのnに対して
    1<b[n]<2+√3
    -1<b[n]-2<√3
    (b[n]-2)^2<3
    ∴3-(b[n]-2)^2>0
    となるので、
    b[n]-b[n-1]
    =4-1/b[n-1]-b[n-1]
    ={3-(b[n-1]-2)^2}/b[n-1]
    >0

引用返信/返信 [メール受信/OFF]
■49074 / ResNo.2)  Re[2]: 単調増加数列
□投稿者/ むさし 一般人(2回)-(2019/03/24(Sun) 05:56:47)
    有り難うございます
    意外と考えるところがあって難しいです
解決済み!
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-2]



■記事リスト / ▲上のスレッド
■49051 / 親記事)  数学について。
□投稿者/ コルム 付き人(70回)-(2019/03/21(Thu) 04:15:22)
    次の問題がわかりません。教えていただけると幸いです。お願い致します。
847×355 => 250×104

IMG_20190320_181758_688.JPG
/51KB
引用返信/返信 [メール受信/OFF]

▽[全レス1件(ResNo.1-1 表示)]
■49055 / ResNo.1)  Re[1]: 数学について。
□投稿者/ muturajcp 付き人(58回)-(2019/03/21(Thu) 22:01:25)
    43.直線L:4x+3y=8と円C:x^2+y^2-2x-4y+4=0がある.
    (1)
    C:(x-1)^2+(y-2)^2=1
    中心(1,2)
    半径1

    (2)
    直線Lと円Cの交点を(x,y)とすると
    L:
    4x+3y=8
    ↓両辺から4xを引くと
    3y=8-4x
    ↓両辺を3で割ると
    y=(8-4x)/3…(2.1)

    C:
    x^2+y^2-2x-4y+4=0
    ↓これに(2.1)を代入すると
    x^2+{(8-4x)/3}^2-2x-4{(8-4x)/3}+4=0
    ↓両辺に9をかけると
    9x^2+(8-4x)^2-18x-12(8-4x)+36=0
    9x^2+64-64x+16x^2-18x-96+48x+36=0
    25x^2-34x+4=0
    この2次方程式の2つの解をx1,x2とすると解と係数の関係から
    x1+x2=34/25
    x1*x2=4/25
    x1,x2に対応するy座標をy1,y2とすると(2.1)から
    y1=(8-4x1)/3
    y2=(8-4x2)/3
    y1-y2=4(x2-x1)/3
    2つの交点(x1,y1)と(x2,y2)の距離sは
    s
    =√{(x1-x2)^2+(y1-y2)^2}
    ↓y1-y2=4(x2-x1)/3だから
    =√{(x1-x2)^2+{4(x2-x1)/3}^2}
    =√{(x1-x2)^2+16(x2-x1)^2/9}
    =√[25{(x1-x2)^2}/9]
    =√[25{(x1+x2)^2-4x1*x2}/9]
    ↓x1+x2=34/25
    ↓x1*x2=4/25
    ↓だから
    =√[25{(34/25)^2-4*4/25}/9]
    =2√[{(17^2/25)-4}/9]
    =2√{(289-100)/25/9}
    =2(√21)/5
    ∴LがCによって切り取られてでいる線分{(x1,y1)-(x2,y2)}の長さは
    (2√21)/5

    44.
    (a,b)を円x^2+y^2=3上の点とする
    (x,y)を点(a,b)での接線上の点とする
    接線ベクトル(x-a,y-b)と
    法線ベクトル(a,b)は垂直だから
    その内積は0になるから
    ((a,b),(x-a,y-b))=a(x-a)+b(y-b)=0
    ax+by-a^2-b^2=0
    ↓a^2+b^2=3だから接線は
    ax+by-3=0
    ax+by=3…(3.1)
    ↓点(1,√3)を通るから
    a+b√3=3
    ↓両辺からb√3を引くと
    a=3-b√3
    ↓これをa^2+b^2=3に代入すると
    (3-b√3)^2+b^2=3
    4b^2-6b√3+9=3
    ↓両辺から3を引くと
    4b^2-6b√3+6=0
    ↓両辺を2で割ると
    2b^2-3b√3+3=0
    (b-√3)(2b-√3)=0
    b=√3.又は,b=√3/2
    b=√3の時
    a=0
    y=√3
    b=√3/2の時
    a=3/2
    3x/2+y√3/2=3
    3x+y√3=6
    y=(2-x)√3

    ∴接線の方程式は
    y=√3

    y=(2-x)√3
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-1]






Mode/  Pass/

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

- Child Tree -
Edit By 数学ナビゲーター