数学ナビゲーター掲示板

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

■ 過去ログ検索の勧め⇒ここを読んでみてください
google検索

 
この掲示板の過去ログをgoogleで検索します。
検索条件:
現在のログを検索過去のログを検索
■ 2006/2/20より、累計:、本日:、昨日:
数式の記述方法
TeX入力ができます。 \[ TeX形式数式 \] あるいは,$ TeX形式数式 $ で数式を記述します。
 TeX形式数式には半角英数字のみです。詳しくは、ここを見てください。文字化けが発生したときはここを見てください。
■ 質問をする方は、回答者に失礼のないようにお願いします。
携帯電話でこの掲示板を見れるようにしました。⇒ここを見てください。
■ 24時間以内に作成されたスレッドは New で表示されます。
■ 24時間以内に更新されたスレッドは UpDate で表示されます。

記事リスト ( )内の数字はレス数
Newモンクレールコピー(0) | Nomal√(3-√3)(2) | Nomal(削除)(1) | Nomal順列(4) | Nomal期待値(2) | Nomal順列(2) | Nomalフィボナッチ数(2) | Nomal素数(2) | Nomal4年度国立理系入試問題(1) | Nomal2次式(0) | Nomal2次式(2) | Nomal極限(0) | Nomal積分(2) | Nomal二次方程式(0) | Nomal面積の2等分線(4) | Nomal多項式(0) | Nomal自然数n(2) | Nomalフェルマーの最終定理の証明(73) | Nomal素数とcos(0) | Nomal平行六角形(5) | Nomal順列(2) | Nomal2次不等式(3) | Nomal平方数(2) | Nomal方程式の解(2) | Nomal1の原始2n+1乗根(0) | Nomal積分不等式(2) | Nomalオイラー関数と余り(0) | Nomal不等式(2) | Nomal広義積分(2) | Nomal有理数と素数(9) | Nomal微分方程式の級数解(1) | Nomal積分の漸化式(3) | Nomal数列の極限(0) | Nomal不等式(2) | Nomal無平方な多項式(2) | Nomal難しい積分(2) | Nomalスピアマンの順位相関係数の求め方について(0) | Nomal相加相乗で(2) | Nomal微分で関数の最大値を求める(3) | Nomal自然数 階乗(0) | Nomal期待値と極限(0) | Nomal回転体の体積(6) | Nomal円と三角形、有理数と無理数(2) | Nomal定積分(2) | Nomal二次関数の9に等しい桁(1) | Nomalベクトル(4) | Nomal複素数(2) | Nomal式の値を求める(4) | Nomal漸化式と不等式(2) | Nomal最大公約数(4) | Nomalsin(x)sin(x+1)<c(2) | Nomal三角形の面積の大小(4) | Nomal4次多項式(2) | Nomal偶数の約数(2) | Nomal青空学園数学科(0) | Nomal一次変数の微分可能性について(1) | Nomal積分(0) | Nomal有限小数(2) | Nomalイデアル(2) | Nomal確率(3) | Nomal52545の「約数の個数」の式変形について(5) | Nomal約数の個数(6) | Nomal羅生門(1) | Nomal高校数学 確率の問題です。(2) | Nomal(x^x)^x = x^(x^2)(4) | Nomal数字が重複しない積(1) | Nomal自然数(2) | Nomal余り(2) | Nomalklog(1+1/k) < 1を証明する(2) | Nomal積分の極限(3) | Nomal平方数と素数(2) | Nomal約数(1) | Nomal整数問題(4) | Nomal期待値(2) | Nomal定積分(4) | Nomaln乗根(1) | Nomallim[θ→0](θ/sinθ)(2) | Nomal常微分方程式の基本的な質問(2) | Nomal単位円と正三角形(2) | Nomal証明 微積(0) | Nomal台形(1) | Nomal設問ミスですか?それとも解けますか?(1) | Nomal二次関数(1) | Nomalコラッツ予想(0) | Nomalζ関数(1) | Nomal(削除)(0) | Nomal高校数学 期待値の問題です(2) | Nomal二項係数(1) | Nomalフェルマーの最終定理の普通の証明(10) | Nomal高校数学レベルの定積分(2) | Nomal場合の数 (カタラン数に関係したもの)(2) | Nomal和文差分を利用した数列について(1) | Nomal面積体積表面積です。(2) | Nomal確率の基礎問題(1) | Nomal微積分(1) | Nomal整数の方程式(1) | Nomal確率の最大値(0) | Nomal至急お願いします(2) | Nomal不等式(3) | Nomal場合の数(2) |



■記事リスト / ▼下のスレッド
■50801 / 親記事)  漸化式
□投稿者/ 子 一般人(1回)-(2021/05/22(Sat) 19:45:28)
    a[1]=0, a[2]=1
    a[n]=(n-1)(a[n-1]+a[n-2]) (n≧3)
    で定まる自然数の数列の素数p番目の項
    a[p]をpで割った時の余りは何ですか?
引用返信/返信 [メール受信/OFF]

▽[全レス1件(ResNo.1-1 表示)]
■50804 / ResNo.1)  Re[1]: 漸化式
□投稿者/ WIZ 一般人(1回)-(2021/05/27(Thu) 23:29:06)
    2021/05/27(Thu) 23:39:38 編集(投稿者)

    a[n] = (n-1)(a[n-1]+a[n-2])
    ⇒ a[n]-n*a[n-1] = (n-1)a[n-2]-a[n-1]

    よって、n ≧ 3 のとき、b[n] = a[n]-n*a[n-1] おけば
    b[n] = -b[n-1]
    となる。

    a[3] = (3-1)(a[2]+a[1]) = 2(1+0) = 2
    b[3] = a[3]-3*a[2] = 2-3*1 = -1
    なので、
    b[n] = a[n]-n*a[n-1] = (-1)^n

    尚、
    a[2]-2*a[1] = 1-2*0 = 1 = (-1)^2
    なので、
    a[n]-n*a[n-1] = (-1)^n
    は n = 2 でも成立する。

    a[n] = (n-1)(a[n-1]+a[n-2])
    ⇒ a[n]+a[n-1]+a[n-2] ≡ 0 (mod n)
    ⇒ a[n]+(a[n-1]-(n-1)a[n-2])+n*a[n-2] ≡ 0 (mod n)
    ⇒ a[n]+(-1)^(n-1) ≡ 0 (mod n)
    ⇒ a[n] ≡ -(-1)^(n-1) ≡ (-1)^n (mod n)

    よって、n ≧ 2 において、n が素数であるかないかに関わらず、
    n が偶数なら、a[n] を n で割った余りは 1
    n が奇数なら、a[n] を n で割った余りは n-1
    となります。
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-1]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■50803 / 親記事)  最大公約数
□投稿者/ み 一般人(1回)-(2021/05/23(Sun) 20:52:03)
    コンパスと定規を使って最大公約数を求める手動計算機を考案せよ

    この問題の解答と解説をお願いします。
引用返信/返信 [メール受信/OFF]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■50792 / 親記事)  和の求め方がわかりません。
□投稿者/ さんご 一般人(1回)-(2021/05/18(Tue) 19:50:47)
     の求め方を知りたいです。
    答えは1+aになるそうですが、なぜそうなるのかがわかりません。


引用返信/返信 [メール受信/ON]

▽[全レス3件(ResNo.1-3 表示)]
■50793 / ResNo.1)  Re[1]: 和の求め方がわかりません。
□投稿者/ らすかる 付き人(51回)-(2021/05/19(Wed) 00:02:06)
    a>0ならば
    無限級数の公式Σ[k=0〜∞]r^k=1/(1-r)に
    r=a/(1+a)を代入すれば求まります。

引用返信/返信 [メール受信/OFF]
■50794 / ResNo.2)  Re[2]: 和の求め方がわかりません。
□投稿者/ さんご 一般人(2回)-(2021/05/19(Wed) 09:55:29)
    理解できました!ありがとうございます!!
引用返信/返信 [メール受信/OFF]
■50800 / ResNo.3)  Re[3]: 和の求め方がわかりません。
□投稿者/ さんご 一般人(3回)-(2021/05/22(Sat) 13:47:01)
    解決しました
解決済み!
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-3]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■50798 / 親記事)  ベイズ更新について
□投稿者/ haru 一般人(1回)-(2021/05/19(Wed) 19:46:09)
    ベイズ更新についての問題です。
    見分けのつかない袋が 3 つある.
    袋1 には赤玉と白玉が 1 : 1 の割合で,袋2 には 3 : 1 の割合で,袋3 には 1 : 2 で入っている.

    1 つの袋を無作為に選び,その中から 1 つ玉を取り出したところ,赤玉だった.
    その後,取り出した玉を元の袋に戻してよくかき混ぜ,その袋から 1 つ玉を取り出すという作業を 2 回繰り返した.
    2 回目も 3 回目も取り出した玉の色は赤だった.

    このとき,(1) 2 回目 および (2) 3 回目の玉の取り出し終了時点での 袋1 の事後確率を求めよ。

    答えがないのであっているか確認したいです。
    可能であれば解説も含めて回答よろしくお願いします。
引用返信/返信 [メール受信/OFF]



■記事リスト / ▲上のスレッド
■50795 / 親記事)  無限積分
□投稿者/ megumi 一般人(11回)-(2021/05/19(Wed) 15:56:25)
    2021/05/22(Sat) 12:45:59 編集(投稿者)

     ディリクレ積分

      ∫[0→∞] sin(x)/x dx = π/2

    を利用して

      ∫[0→∞] sin(2x)sin(x)/x^2 dx

    を求めたのですが計算が合いません。間違いをご指摘ください。

723×767 => 235×250

1621407385.png
/50KB
引用返信/返信 [メール受信/OFF]

▽[全レス2件(ResNo.1-2 表示)]
■50796 / ResNo.1)  Re[1]: 無限積分
□投稿者/ 豚の脂身 一般人(1回)-(2021/05/19(Wed) 17:09:08)


    ですかね。
引用返信/返信 [メール受信/OFF]
■50797 / ResNo.2)  Re[2]: 無限積分
□投稿者/ megumi 一般人(12回)-(2021/05/19(Wed) 17:30:26)
     あちゃ〜、詰めのところでいろいろ計算ミスしてるなあwwwww

     すばやい回答ありがとうございました。
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-2]






Mode/  Pass/

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

- Child Tree -
Edit By 数学ナビゲーター