数学ナビゲーター掲示板

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

■ 過去ログ検索の勧め⇒ここを読んでみてください
google検索

 
この掲示板の過去ログをgoogleで検索します。
検索条件:
現在のログを検索過去のログを検索
■ 2006/2/20より、累計:、本日:、昨日:
数式の記述方法
TeX入力ができます。 \[ TeX形式数式 \] あるいは,$ TeX形式数式 $ で数式を記述します。
 TeX形式数式には半角英数字のみです。詳しくは、ここを見てください。文字化けが発生したときはここを見てください。
■ 質問をする方は、回答者に失礼のないようにお願いします。
携帯電話でこの掲示板を見れるようにしました。⇒ここを見てください。
■ 24時間以内に作成されたスレッドは New で表示されます。
■ 24時間以内に更新されたスレッドは UpDate で表示されます。

記事リスト ( )内の数字はレス数
Nomal高校数学 期待値の問題です(2) | Nomal二項係数(1) | Nomalフェルマーの最終定理の普通の証明(10) | Nomal高校数学レベルの定積分(2) | Nomal場合の数 (カタラン数に関係したもの)(2) | Nomal和文差分を利用した数列について(1) | Nomal面積体積表面積です。(2) | Nomal確率の基礎問題(1) | Nomal微積分(1) | Nomal整数の方程式(1) | Nomal確率の最大値(0) | Nomal至急お願いします(2) | Nomal不等式(3) | Nomal場合の数(2) | Nomalζ関数(0) | Nomal平方数(3) | Nomal形式的べき級数(0) | NomalG(0) | Nomal岩波講座基礎数学集合の補題6.1についての質問(1) | Nomal羅生門(0) | Nomal確率(2) | Nomal約数の個数(5) | Nomal52545の「約数の個数」の式変形について(4) | Nomal不等式(0) | Nomal素因数の個数について(2) | Nomal場合の数(1) | Nomal体(3) | Nomal部分分数分解(3) | Nomal約数(0) | Nomal線形代数の微分(1) | Nomal数珠順列(0) | Nomaleは無理数だけど(0) | Nomal素数(2) | Nomal(削除)(1) | Nomalフーリエ級数展開・フーリエ変換(2) | Nomal線形代数(1) | Nomal無限和(7) | Nomal進数の表現(4) | Nomal高校数学 整数問題(4) | Nomal整数の表現の同値証明(4) | Nomal多項式の既約性(0) | Nomal円錐台の断面積(9) | Nomal相関係数と共分散(1) | Nomallogの計算(3) | Nomaltan(z) を z = π/2 中心にローラン展開する(2) | Nomal複素数平面(1) | Nomal複素数 証明(難)(0) | Nomal確率の問題が分かりません 助けてください(1) | Nomal極限(3) | Nomalメビウス変換(0) | Nomal複素数 写像 (0) | Nomal複素数平面(0) | Nomal解答を教えてください(1) | Nomal解答を教えてください(0) | Nomal解答を教えてください(0) | Nomal解答を教えてください(0) | Nomal解答を教えてください(0) | Nomal確率の不等式(1) | Nomal無理関数の積分(大学)(2) | Nomal複素数(1) | Nomal確率(2) | Nomal囲まれた面積(2) | Nomal複素数(2) | Nomal微分可能な点を求める問題(1) | Nomal初等数学によるフェルマーの最終定理の証明(5) | Nomal極限の問題 2改(1) | Nomal極限の問題2(1) | Nomal極限の問題(1) | Nomal多項式の整除(1) | Nomal三角形(1) | Nomal三角数の和(0) | Nomalコラッツ予想(0) | Nomal平方数(1) | Nomal整数問題(1) | Nomal低レベルな問題ですいません(2) | Nomal中学数学によるフェルマーの最終定理の証明(1) | Nomalガウス整数の平方和(8) | Nomal環でしょうか(2) | Nomal三角関数の式(0) | Nomal大学数学 位相数学(1) | Nomal確率(1) | Nomal1/{z^2(z-1)^2} z=0でローラン展開(1) | Nomal速度(2) | Nomali^iについて(2) | Nomal(x+1)^n-x^n(1) | Nomal定積分(1) | Nomal複素数平面(6) | Nomal円に内接する四角形(2) | Nomal不等式(4) | Nomal代数学(1) | Nomal極限(0) | Nomal大学数学(0) | Nomal三角形(2) | Nomal多項式(1) | Nomal有限体(0) | Nomal場合の数(2) | Nomal同値関係が分かりません(0) | Nomal素因数(1) | Nomal質問(2) | Nomal周期関数(1) |



■記事リスト / ▼下のスレッド
■50311 / 親記事)  漸化式
□投稿者/ シネマ 一般人(1回)-(2020/04/17(Fri) 18:11:39)
    任意の自然数に対して個の実数が定義されており、
    以下の関係をみたしている。



    任意の自然数に関して

    であることが分かっているとするとき、残りのの求め方を教えて下さい。
引用返信/返信 [メール受信/OFF]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■50288 / 親記事)  確率における情報
□投稿者/ 小池百合コロナ 一般人(1回)-(2020/04/14(Tue) 15:55:50)
    以下の問題を素直に解くとどのようになるか教えてほしいのです。
    よろしくお願いします。

    投げたり落としたりすると1/6の確率で割れる皿が何枚かある。
    百合子がその皿を両手に一枚ずつ持って遠くに投げたら、
    一枚は空を飛んでいたカラスに当たって落ちて割れてしまった。
    もう一枚は百合子からは見えないし割れたような音も聞こえないほど遠くに投げられたため、百合子は皿の状態が確認できない。

    (1) 遠くに投げられた皿も割れている確率はいくらか。
    (つまり、百合子が投げた皿が2枚とも割れている確率はいくらか。)

    後日、百合子は崖へ行き、両手に一枚ずつ持っている皿を崖から落とした。
    下のほうの様子を目で確認することは出来ないが、ガチャンと皿が割れる音がするのを百合子は聞いた。
    少なくとも一枚の皿は割れていると百合子は確信した。

    (2) 百合子が落とした皿が2枚とも割れている確率はいくらか。
引用返信/返信 [メール受信/OFF]

▽[全レス17件(ResNo.13-17 表示)]
■50306 / ResNo.13)  Re[13]: 確率における情報
□投稿者/ 小池百合コロナ 一般人(9回)-(2020/04/15(Wed) 16:36:21)
    有難うございます。

    つまり、以下の3つの問題は、本質的に同じことを問うていると
    考えていいということでしょうか?
    1.
    投げたり落としたりすると1/6の確率で割れる皿が何枚かある。
    百合子がその皿を両手に一枚ずつ持って同時に遠くに投げたら、
    一枚は空を飛んでいたカラスに当たって落ちて割れてしまった。
    カラスは2枚の皿から無作為にどちらかの皿を選び当たるものとする。
    もう一枚は百合子からは見えないし割れたような音も聞こえないほど遠くに投げられたため、百合子は皿の状態が確認できない。
    遠くに投げられた皿も割れている確率はいくらか。
    2.
    部屋の中に人Aと人Bが居て、大小2つのサイコロがある。
    AとBの間にはついたてがある。
    Aがサイコロを2個振る。(目はBには見えない)
    Aは2個のサイコロのうち、1個のサイコロの値をBに言う。
    Aはどちらのサイコロを選んで値を言うかは無作為に決める。
    Bの聞いた値が1であったとき、もう一つのサイコロも1が出ている確率はいくらか。
    3.
    部屋の中に人Aと人Bが居て、大小2つのサイコロがある。
    AとBの間にはついたてがある。
    Aがサイコロを2個振る。(目はBには見えない)
    Aは2個のサイコロのうち、1個のサイコロの値をBに言う。
    Bの聞いた値が1であったとき、もう一つのサイコロも1が出ている確率はいくらか。
引用返信/返信 [メール受信/OFF]
■50307 / ResNo.14)  Re[14]: 確率における情報
□投稿者/ らすかる 一般人(22回)-(2020/04/15(Wed) 16:38:40)
    はい、同じことです。
引用返信/返信 [メール受信/OFF]
■50308 / ResNo.15)  Re[15]: 確率における情報
□投稿者/ 小池百合コロナ 一般人(10回)-(2020/04/15(Wed) 17:50:21)
    有難うございます。本当に丁寧に教えていただいて感謝しております。

    1. 2. 3. は
    「どちらかの目が1とわかったが、他のサイコロの目も1である確率」
    である、ということでしょうか?

    そして
    「どちらかの目が1とわかったが、他のサイコロの目も1である確率」と
    「どちらかの目が1とわかった場合に他のサイコロの目も1である確率」
    は異なるということでしょうか?


    ■50295のただのぞろ目の問題は、
    >確率は聞いた目の値と関係なく1/6です。
    とのことなので、
    >「どちらかの目がわかった場合に他のサイコロの目も同じ値である確率」
    というよりもむしろ、
    「どちらかの目がわかったが、他のサイコロの目も同じ値である確率」
    なのでしょうか?
引用返信/返信 [メール受信/OFF]
■50309 / ResNo.16)  Re[16]: 確率における情報
□投稿者/ らすかる 一般人(23回)-(2020/04/15(Wed) 18:18:18)
    > 1. 2. 3. は
    > 「どちらかの目が1とわかったが、他のサイコロの目も1である確率」
    > である、ということでしょうか?

    違います。その言い回しにすると意味が変わってしまいます。
    「一つのサイコロを無作為に選んだときにその目が1だったが、
     他のサイコロの目も1である確率」と言わないと正しく解釈されません。
    「どちらかの目が1とわかった」と書くと
    「二つのうち少なくとも一つは1であった」という意味に解釈されてしまいます。
    従って
    > そして
    > 「どちらかの目が1とわかったが、他のサイコロの目も1である確率」と
    > 「どちらかの目が1とわかった場合に他のサイコロの目も1である確率」
    > は異なるということでしょうか?
    この二つは同じです。

引用返信/返信 [メール受信/OFF]
■50310 / ResNo.17)  Re[17]: 確率における情報
□投稿者/ 小池百合コロナ 一般人(11回)-(2020/04/15(Wed) 21:10:14)
    ありがとうございました。
    頭の中が少しずつ整理されてきました。
解決済み!
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-9] [10-17]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■50299 / 親記事)  統計学の質問
□投稿者/ ななな 一般人(1回)-(2020/04/15(Wed) 09:51:41)
    Q1 公正な4枚のコインを投げて表の出る枚数をXとするとき、r.v. Xの確率分布を求めよ。

    Q2 r.v. Xの確率密度変数f(x)が次のように与えられている。

    f(x)= ax(2-x) (0≦x≦2),0 (その他)

    (1)aの値を求めよ。

    (2)分布関数F(x)を求め、そのグラフを書け。

    (3)P(-(1/4)≦X≦1)の値を求めよ。



    以上の問題が分かりません...。
    グラフを書く問題は、答えていただくのが難しいと思うので
    ヒントを頂けると嬉しいです...!
引用返信/返信 [メール受信/OFF]



■記事リスト / ▲上のスレッド
■50291 / 親記事)  確率変数
□投稿者/ 大学数学 一般人(1回)-(2020/04/15(Wed) 00:21:24)
    確率変数と標準偏差の問題です。

    答えは3番になります。
    計算方法を教えてください。

    よろしくお願いします
854×398 => 250×116

67468394-5BA0-4529-BEED-B081BF1F2C46.jpeg
/31KB
引用返信/返信 [メール受信/OFF]






Mode/  Pass/

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

- Child Tree -
Edit By 数学ナビゲーター