数学ナビゲーター掲示板

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

■ 過去ログ検索の勧め⇒ここを読んでみてください
google検索

 
この掲示板の過去ログをgoogleで検索します。
検索条件:
現在のログを検索過去のログを検索
■ 2006/2/20より、累計:、本日:、昨日:
数式の記述方法
TeX入力ができます。 \[ TeX形式数式 \] あるいは,$ TeX形式数式 $ で数式を記述します。
 TeX形式数式には半角英数字のみです。詳しくは、ここを見てください。文字化けが発生したときはここを見てください。
■ 質問をする方は、回答者に失礼のないようにお願いします。
携帯電話でこの掲示板を見れるようにしました。⇒ここを見てください。
■ 24時間以内に作成されたスレッドは New で表示されます。
■ 24時間以内に更新されたスレッドは UpDate で表示されます。

記事リスト ( )内の数字はレス数
New自然数の方程式(0) | UpDateフェルマーの最終定理の簡単な証明(17) | UpDate単調増加数列(2) | Nomal数学について。(1) | Nomal(削除)(1) | Nomal平面図形について。(2) | Nomal平面図形について。(1) | Nomal確率について。(4) | Nomal確率について。(1) | Nomal確率について。(0) | Nomal確率について。(4) | Nomal コピー - KEEVOO (0) | Nomal分析について。(0) | Nomal確率について。(2) | Nomal統計について。(4) | Nomal整数解(1) | Nomal静岡大学数学について。(1) | Nomalベクトルについて。(1) | Nomalベクトルについて。(1) | Nomal確率(2) | Nomal箱ひげ図(2) | Nomal3次関数について。(1) | Nomalベクトルについて。(2) | Nomal【緊急】中2数学の証明(2) | Nomalε-N論法を使った極限の証明(1) | Nomal偏微分・重積分(1) | Nomal複素解析学 留数計算(1) | Nomal数列について。(1) | Nomal数列について。(1) | Nomal数Aについて。(1) | Nomal線積分の問題(1) | Nomalベクトルについて。(7) | Nomalベクトルについて。(1) | Nomalベクトルについて。(5) | Nomal数列について。(14) | Nomal出かける時に気を遣わずに使用できるショルダーバッグ(0) | Nomalベクトルについて。(3) | Nomal数列について。(2) | Nomal微分方程式の問題(3) | Nomalベクトルについて。(1) | Nomal整数について。(1) | Nomal有理数(2) | Nomal放物線と円(1) | Nomalベクトルについて。(16) | Nomal数列の極限(1) | Nomal確率(6) | Nomalたけしのコマ大数学科の問題・・・(3) | Nomal数列(2) | Nomal整数の個数と極限(5) | Nomal数列(2) | Nomal極限(6) | Nomal統計学についての質問(2) | Nomal確率について。(1) | Nomalベクトル場の問題(1) | Nomal楕円面と直線の交点(1) | Nomal面積の最大値(1) | Nomalfw(0) | Nomalどうしても行列式の計算がミスが誰か助けて!!(0) | Nomal箱ひげ図について。(0) | Nomalベクトルについて。(2) | Nomal複素関数(0) | Nomal三角関数の面積(2) | Nomal二次方程式の標準形への変換(1) | Nomal等式(3) | Nomal(削除)(0) | Nomal五角形(2) | Nomal桁数(1) | Nomal対数不等式(2) | Nomal三角関数(2) | Nomal不等式(2) | Nomal三次方程式(5) | Nomal数列(0) | Nomal複素級数のコーシー積(6) | Nomal統計学(1) | Nomal確率(2) | Nomal三次方程式の解(4) | Nomal確率(5) | Nomal確率(1) | Nomal接する(2) | Nomal整数(0) | Nomal待ち行列(1) | Nomal放物線と接線(2) | Nomal確率(2) | Nomal直角二等辺三角形と円の共通部分(2) | Nomal一次不等式で表される領域の面積(2) | Nomal管理人さんへ(1) | Nomal判別式(2) | Nomal数列の周期と初項(2) | Nomal近似式(2) | Nomal模範解答の解説お願いします(1) | Nomalベクトルについて。(1) | Nomal互いに素(1) | Nomalベクトルについて。(1) | Nomal二次方程式について。(1) | Nomal図形について。(1) | Nomal埋め(1) | Nomalベクトル(1) | Nomal極値(1) | Nomal極値(1) | Nomal代数学の問題(1) |



■記事リスト / ▼下のスレッド
■49076 / 親記事)  自然数の方程式
□投稿者/ だんすぱーちー 一般人(1回)-(2019/03/24(Sun) 13:14:45)
    a,b,x,yは自然数で、xはyを割り切る(yはxの倍数である)ものとする。
    さらに、s[1],s[2],s[3],s[4],t[1],t[2],t[3],t[4]を整数として、
    これらが
    as[1]=xt[1]
    bs[2]=xt[2]
    as[3]=yt[3]
    bs[4]=yt[4]
    |s[1]s[4]-s[2]s[3]|=1
    |t[1]t[4]-t[2]t[3]|=1
    を満たしているとする。
    このとき、x,yをa,bを用いて表せ。
    
    この問題の解き方を教えて下さい。
    よろしくお願いします。

引用返信/返信 [メール受信/OFF]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■49044 / 親記事)  フェルマーの最終定理の簡単な証明
□投稿者/ 日高 一般人(1回)-(2019/03/16(Sat) 20:18:32)
    間違いがあれば、ご指摘いただけないでしょうか
1240×1754 => 177×250

2-2.png
/67KB
引用返信/返信 [メール受信/ON]

▽[全レス17件(ResNo.13-17 表示)]
■49070 / ResNo.13)  Re[12]: フェルマーの最終定理の簡単な証明
□投稿者/ 日高 一般人(7回)-(2019/03/23(Sat) 20:32:15)
    x=fb, y=fc, z=fd (fは無理数、b,c,dは有理数)と仮定します。

    z=x+r, r=(pa)^{1/(p-1)}

    x^p+y^p=(x+r)^pは、(fb)^p+(fc)^p=(fb+(pa)^{1/(p-1)})^pとなります。
    両辺をf^pで割ると、b^p+c^p=(b+[(pa)^{1/(p-1)}]/f)^p.@
    仮定により、(pa)^{1/(p-1)}は有理数となるので、a^{1/(p-1)}は無理数となります。
    f=a^{1/(p-1)}とすると、@は、
    b^p+c^p=(b+p^{1/(p-1)})^pとなります。
    これは、cを有理数とすると、bは無理数となります。
    よって、仮定は間違いということになります。
引用返信/返信 [メール受信/OFF]
■49071 / ResNo.14)  Re[13]: フェルマーの最終定理の簡単な証明
□投稿者/ muturajcp 付き人(66回)-(2019/03/23(Sat) 21:23:17)
    仮定により
    (pa)^{1/(p-1)}/f
    は有理数になるけれど
    (pa)^{1/(p-1)}は有理数となりません

引用返信/返信 [メール受信/OFF]
■49072 / ResNo.15)  Re[14]: フェルマーの最終定理の簡単な証明
□投稿者/ 日高 一般人(8回)-(2019/03/23(Sat) 22:07:00)

    「(pa)^{1/(p-1)}は有理数となりません」について、z=x+rとおいて、

    x^p+y^p=(x+r)^pとしたとき、x,y,zを有理数と仮定すると、rは、有理数となります。
    証明ファイルで、r=(pa)^{1/(p-1)}としていますので、(pa)^{1/(p-1)}は有理数となります。
引用返信/返信 [メール受信/OFF]
■49073 / ResNo.16)  Re[15]: フェルマーの最終定理の簡単な証明
□投稿者/ muturajcp 付き人(67回)-(2019/03/24(Sun) 05:36:12)
    いいえ
    x=fb, y=fc, z=fd (fは無理数、b,c,dは有理数)の
    仮定により
    x,y,zはいずれも無理数だから
    r=z-x=f(d-b)
    r=(pa)^{1/(p-1)}
    は無理数となります
    有理数となりません
引用返信/返信 [メール受信/OFF]
■49075 / ResNo.17)  Re[16]: フェルマーの最終定理の簡単な証明
□投稿者/ 日高 一般人(9回)-(2019/03/24(Sun) 11:34:59)
    > r=(pa)^{1/(p-1)}
    > は無理数となります   そうでした。

    (pa)^{1/(p-1)}が無理数となるので、a^{1/(p-1)}は、有理数、または、無理数となります。
    a^{1/(p-1)}が有理数の場合も、cを有理数とすると、bは無理数となります。
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-9] [10-17]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■49067 / 親記事)  単調増加数列
□投稿者/ むさし 一般人(1回)-(2019/03/23(Sat) 12:29:23)
    a[1]=1、a[2]=3、a[n+2]=4a[n+1]-a[n] (n≧1)
    で定まる数列a[n]に対し
    b[n]=a[n+1]/a[n]
    とすると、b[n]が単調増加であることを示すには
    どうすればいいのでしょうか?
引用返信/返信 [メール受信/OFF]

▽[全レス2件(ResNo.1-2 表示)]
■49068 / ResNo.1)  Re[1]: 単調増加数列
□投稿者/ らすかる 一般人(1回)-(2019/03/23(Sat) 13:30:08)
    b[n]=a[n+1]/a[n]
    =(4a[n]-a[n-1])/a[n]
    =4-a[n-1]/a[n]
    =4-1/b[n-1]
    b[1]=3<2+√3
    b[n-1]<2+√3のとき
    1/b[n-1]>1/(2+√3)=2-√3
    -1/b[n-1]<-2+√3
    4-1/b[n-1]<2+√3
    ∴b[n]<2+√3
    となるのですべてのnに対しb[n]<2+√3
    また条件から明らかにa[n+1]>a[n]なのでb[n]>1
    よってすべてのnに対して
    1<b[n]<2+√3
    -1<b[n]-2<√3
    (b[n]-2)^2<3
    ∴3-(b[n]-2)^2>0
    となるので、
    b[n]-b[n-1]
    =4-1/b[n-1]-b[n-1]
    ={3-(b[n-1]-2)^2}/b[n-1]
    >0

引用返信/返信 [メール受信/OFF]
■49074 / ResNo.2)  Re[2]: 単調増加数列
□投稿者/ むさし 一般人(2回)-(2019/03/24(Sun) 05:56:47)
    有り難うございます
    意外と考えるところがあって難しいです
解決済み!
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-2]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■49051 / 親記事)  数学について。
□投稿者/ コルム 付き人(70回)-(2019/03/21(Thu) 04:15:22)
    次の問題がわかりません。教えていただけると幸いです。お願い致します。
847×355 => 250×104

IMG_20190320_181758_688.JPG
/51KB
引用返信/返信 [メール受信/OFF]

▽[全レス1件(ResNo.1-1 表示)]
■49055 / ResNo.1)  Re[1]: 数学について。
□投稿者/ muturajcp 付き人(58回)-(2019/03/21(Thu) 22:01:25)
    43.直線L:4x+3y=8と円C:x^2+y^2-2x-4y+4=0がある.
    (1)
    C:(x-1)^2+(y-2)^2=1
    中心(1,2)
    半径1

    (2)
    直線Lと円Cの交点を(x,y)とすると
    L:
    4x+3y=8
    ↓両辺から4xを引くと
    3y=8-4x
    ↓両辺を3で割ると
    y=(8-4x)/3…(2.1)

    C:
    x^2+y^2-2x-4y+4=0
    ↓これに(2.1)を代入すると
    x^2+{(8-4x)/3}^2-2x-4{(8-4x)/3}+4=0
    ↓両辺に9をかけると
    9x^2+(8-4x)^2-18x-12(8-4x)+36=0
    9x^2+64-64x+16x^2-18x-96+48x+36=0
    25x^2-34x+4=0
    この2次方程式の2つの解をx1,x2とすると解と係数の関係から
    x1+x2=34/25
    x1*x2=4/25
    x1,x2に対応するy座標をy1,y2とすると(2.1)から
    y1=(8-4x1)/3
    y2=(8-4x2)/3
    y1-y2=4(x2-x1)/3
    2つの交点(x1,y1)と(x2,y2)の距離sは
    s
    =√{(x1-x2)^2+(y1-y2)^2}
    ↓y1-y2=4(x2-x1)/3だから
    =√{(x1-x2)^2+{4(x2-x1)/3}^2}
    =√{(x1-x2)^2+16(x2-x1)^2/9}
    =√[25{(x1-x2)^2}/9]
    =√[25{(x1+x2)^2-4x1*x2}/9]
    ↓x1+x2=34/25
    ↓x1*x2=4/25
    ↓だから
    =√[25{(34/25)^2-4*4/25}/9]
    =2√[{(17^2/25)-4}/9]
    =2√{(289-100)/25/9}
    =2(√21)/5
    ∴LがCによって切り取られてでいる線分{(x1,y1)-(x2,y2)}の長さは
    (2√21)/5

    44.
    (a,b)を円x^2+y^2=3上の点とする
    (x,y)を点(a,b)での接線上の点とする
    接線ベクトル(x-a,y-b)と
    法線ベクトル(a,b)は垂直だから
    その内積は0になるから
    ((a,b),(x-a,y-b))=a(x-a)+b(y-b)=0
    ax+by-a^2-b^2=0
    ↓a^2+b^2=3だから接線は
    ax+by-3=0
    ax+by=3…(3.1)
    ↓点(1,√3)を通るから
    a+b√3=3
    ↓両辺からb√3を引くと
    a=3-b√3
    ↓これをa^2+b^2=3に代入すると
    (3-b√3)^2+b^2=3
    4b^2-6b√3+9=3
    ↓両辺から3を引くと
    4b^2-6b√3+6=0
    ↓両辺を2で割ると
    2b^2-3b√3+3=0
    (b-√3)(2b-√3)=0
    b=√3.又は,b=√3/2
    b=√3の時
    a=0
    y=√3
    b=√3/2の時
    a=3/2
    3x/2+y√3/2=3
    3x+y√3=6
    y=(2-x)√3

    ∴接線の方程式は
    y=√3

    y=(2-x)√3
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-1]



■記事リスト / ▲上のスレッド
■49052 / 親記事)  (削除)
□投稿者/ -(2019/03/21(Thu) 07:15:25)
    この記事は(投稿者)削除されました
引用返信/返信 [メール受信/OFF]

▽[全レス1件(ResNo.1-1 表示)]
■49053 / ResNo.1)  Re[1]: 会計に関わるものなんですが
□投稿者/ mo 一般人(1回)-(2019/03/21(Thu) 15:23:39)
    2019/03/21(Thu) 15:25:46 編集(投稿者)

    参考です

    ●去年の理屈の推測と、それに基づく今年の例
    【昨年】コーチが4名なので、3万ずつで計12万
    2つの少年団で折半(A団22名、B団4名、合計22名)
    A団:120,000÷22×18人=98181.81…で、98,182円
    B団:120,000÷22×4人=21818.18…で、21,818円

    【今年】はコーチが5名なので、3万ずつで計15万
    2つの少年団で折半(A団22名、B団4名、合計22名)
    A団:150,000÷22×18人=122,727.27…で、122,727円】
    B団:150,000÷22×4人=27,272.72…で、27,273円】

    ●【今年の】団員1名当たりの負担について
    全体:150,000÷22=6,818.18…で、6,818円だと、4円不足
    A団:6,818×18=122,724【3円ずれ…団内で調整】
    B団:6,818×4=27,272【1円ずれ…団内で調整】




引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-1]






Mode/  Pass/

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

- Child Tree -
Edit By 数学ナビゲーター