数学ナビゲーター掲示板

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

■ 過去ログ検索の勧め⇒ここを読んでみてください
google検索

 
この掲示板の過去ログをgoogleで検索します。
検索条件:
現在のログを検索過去のログを検索
■ 2006/2/20より、累計:、本日:、昨日:
数式の記述方法
TeX入力ができます。 \[ TeX形式数式 \] あるいは,$ TeX形式数式 $ で数式を記述します。
 TeX形式数式には半角英数字のみです。詳しくは、ここを見てください。文字化けが発生したときはここを見てください。
■ 質問をする方は、回答者に失礼のないようにお願いします。
携帯電話でこの掲示板を見れるようにしました。⇒ここを見てください。
■ 24時間以内に作成されたスレッドは New で表示されます。
■ 24時間以内に更新されたスレッドは UpDate で表示されます。

記事リスト ( )内の数字はレス数
Nomal高校数学 期待値の問題です(2) | Nomal二項係数(1) | Nomalフェルマーの最終定理の普通の証明(10) | Nomal高校数学レベルの定積分(2) | Nomal場合の数 (カタラン数に関係したもの)(2) | Nomal和文差分を利用した数列について(1) | Nomal面積体積表面積です。(2) | Nomal確率の基礎問題(1) | Nomal微積分(1) | Nomal整数の方程式(1) | Nomal確率の最大値(0) | Nomal至急お願いします(2) | Nomal不等式(3) | Nomal場合の数(2) | Nomalζ関数(0) | Nomal平方数(3) | Nomal形式的べき級数(0) | NomalG(0) | Nomal岩波講座基礎数学集合の補題6.1についての質問(1) | Nomal羅生門(0) | Nomal確率(2) | Nomal約数の個数(5) | Nomal52545の「約数の個数」の式変形について(4) | Nomal不等式(0) | Nomal素因数の個数について(2) | Nomal場合の数(1) | Nomal体(3) | Nomal部分分数分解(3) | Nomal約数(0) | Nomal線形代数の微分(1) | Nomal数珠順列(0) | Nomaleは無理数だけど(0) | Nomal素数(2) | Nomal(削除)(1) | Nomalフーリエ級数展開・フーリエ変換(2) | Nomal線形代数(1) | Nomal無限和(7) | Nomal進数の表現(4) | Nomal高校数学 整数問題(4) | Nomal整数の表現の同値証明(4) | Nomal多項式の既約性(0) | Nomal円錐台の断面積(9) | Nomal相関係数と共分散(1) | Nomallogの計算(3) | Nomaltan(z) を z = π/2 中心にローラン展開する(2) | Nomal複素数平面(1) | Nomal複素数 証明(難)(0) | Nomal確率の問題が分かりません 助けてください(1) | Nomal極限(3) | Nomalメビウス変換(0) | Nomal複素数 写像 (0) | Nomal複素数平面(0) | Nomal解答を教えてください(1) | Nomal解答を教えてください(0) | Nomal解答を教えてください(0) | Nomal解答を教えてください(0) | Nomal解答を教えてください(0) | Nomal確率の不等式(1) | Nomal無理関数の積分(大学)(2) | Nomal複素数(1) | Nomal確率(2) | Nomal囲まれた面積(2) | Nomal複素数(2) | Nomal微分可能な点を求める問題(1) | Nomal初等数学によるフェルマーの最終定理の証明(5) | Nomal極限の問題 2改(1) | Nomal極限の問題2(1) | Nomal極限の問題(1) | Nomal多項式の整除(1) | Nomal三角形(1) | Nomal三角数の和(0) | Nomalコラッツ予想(0) | Nomal平方数(1) | Nomal整数問題(1) | Nomal低レベルな問題ですいません(2) | Nomal中学数学によるフェルマーの最終定理の証明(1) | Nomalガウス整数の平方和(8) | Nomal環でしょうか(2) | Nomal三角関数の式(0) | Nomal大学数学 位相数学(1) | Nomal確率(1) | Nomal1/{z^2(z-1)^2} z=0でローラン展開(1) | Nomal速度(2) | Nomali^iについて(2) | Nomal(x+1)^n-x^n(1) | Nomal定積分(1) | Nomal複素数平面(6) | Nomal円に内接する四角形(2) | Nomal不等式(4) | Nomal代数学(1) | Nomal極限(0) | Nomal大学数学(0) | Nomal三角形(2) | Nomal多項式(1) | Nomal有限体(0) | Nomal場合の数(2) | Nomal同値関係が分かりません(0) | Nomal素因数(1) | Nomal質問(2) | Nomal周期関数(1) |



■記事リスト / ▼下のスレッド
■51990 / 親記事)  二次正方行列
□投稿者/ はへほ 一般人(1回)-(2022/10/24(Mon) 12:05:23)
    二次正方行列A,Bで
    AB^2=B^2A
    だが
    AB≠BA
    である例を教えて下さい
引用返信/返信 [メール受信/OFF]

▽[全レス2件(ResNo.1-2 表示)]
■51993 / ResNo.1)  Re[1]: 二次正方行列
□投稿者/ X 一般人(6回)-(2022/10/24(Mon) 19:00:08)
    B=M{(a,b),(c,d)}
    とするとケーリー=ハミルトンの定理により
    B^2=(a+d)B-(ad-bc)E
    (Eは単位行列)
    これを
    AB^2=(B^2)A
    に代入すると
    (a+d)AB-(ad-bc)A=(a+d)BA-(ad-bc)A
    これより
    (a+d)(AB-BA)=O
    ∴AB≠BAのときa+d=0

    これを踏まえて例を考えると、例えば
    A=M(1,1),(2,1)}
    B=M{(1,1),(1,-1)}
    のとき
    AB=M{(2,0),(3,1)}
    BA=M{(3,2),(-1,0)}
    ∴AB≠BA
引用返信/返信 [メール受信/OFF]
■51994 / ResNo.2)  Re[2]: 二次正方行列
□投稿者/ はへほ 一般人(2回)-(2022/10/25(Tue) 10:26:10)
    ありがとうございます
    納得しました
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-2]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■51959 / 親記事)  確率
□投稿者/ ピザ 一般人(1回)-(2022/10/05(Wed) 11:11:08)
    箱の中に1から8の整数が書かれた8個のボールがあり、
    2個取り出して、2個の玉に書かれた|整数の差|が1であればその2個は捨て、
    |整数の差|が1より大きければ2個とも箱に戻す、という行動を繰り返す。
    n回行動をし終えた時点で箱が空になる確率を求めよ。

    この問題が解けないので教えて下さい。
引用返信/返信 [メール受信/OFF]

▽[全レス4件(ResNo.1-4 表示)]
■51978 / ResNo.1)  Re[1]: 確率
□投稿者/ X 一般人(1回)-(2022/10/12(Wed) 18:54:03)
    求める確率をP[n]とします。

    ある1回の行動の前後で箱の中の玉の個数が
    k[個](k=2,4,6,8)からk-2[個]になる確率をR[k,k-2]とすると
    R[8,6]=4/(8C2)=1/7
    R[6,4]=3/(6C2)=1/5
    R[4,2]=2/(4C2)=1/3
    R[2,0]=1
    ∴箱の中の玉の個数が
    l回目の行動の前後で8個から6個に
    l+m回目の行動の前後で6個から4個に
    なり、
    n回目(n≧2)の行動終了まで4個のまま
    である確率をQ[n,l,m]とすると
    Q[n,l,m]={R[8,6](1-R[8,6])^(l-1)}{R[6,4](1-R[6,4])^(m-1)}{1-R[4,2]}^(n-l-m)
    ={(1/7)(6/7)^(l-1)}{(1/5)(4/5)^(m-1)}(2/3)^(n-l-m)
    ={(1/7)(6/7)^(l-1)}{(1/5)(4/5)^(m-1)}{(2/3)^n}(3/2)^(l+m)
    ={(1/7)(9/7)^(l-1)}{(1/5)(6/5)^(m-1)}{(2/3)^n}(3/2)^2
    =(9/140){(9/7)^(l-1)}{(6/5)^(m-1)}(2/3)^n

    よってn回目の行動後に箱の中に4個の玉がある確率をq[n](n≧2)とすると
    q[n]=Σ[l=1〜n-1]Σ[m=1〜n-l]Q[n,l,m]
    =Σ[l=1〜n-1]Σ[m=1〜n-l](9/140){(9/7)^(l-1)}{(6/5)^(m-1)}(2/3)^n
    =(9/140){(2/3)^n}{Σ[l=1〜n-1]{(9/7)^(l-1)}}Σ[m=1〜n-l](6/5)^(m-1)
    =(9/28){(2/3)^n}Σ[l=1〜n-1]{(9/7)^(l-1)}{(6/5)^(n-l)-1}
    =(9/28){(2/3)^n}Σ[l=1〜n-1]{(5/6){(6/5)^n}{(5/6)^(l-1)}(9/7)^(l-1)-(9/7)^(l-1)}
    =(9/28){(2/3)^n}{Σ[l=1〜n-1]{(5/6){(6/5)^n}(15/14)^(l-1)-(9/7)^(l-1)}
    =(9/28){(2/3)^n}{(35/3){(6/5)^n}{(15/14)^(n-1)-1}-(7/2){(9/7)^(n-1)-1}}
    =(9/28){(2/3)^n}{(35/3){(6/5)(9/7)^(n-1)-(6/5)^n}-(7/2)(9/7)^(n-1)+7/2}
    =(3/14){(2/3)^(n-1)}{14・(9/7)^(n-1)-14・(6/5)^(n-1)-(7/2)(9/7)^(n-1)+7/2}
    =(3/2){(2/3)^(n-1)}{2・(9/7)^(n-1)-2・(6/5)^(n-1)-(1/2)(9/7)^(n-1)+1/2}
    =(3/2){(2/3)^(n-1)}{(3/2)(9/7)^(n-1)-2・(6/5)^(n-1)+1/2}
    ={(2/3)^(n-1)}{(9/4)(9/7)^(n-1)-3・(6/5)^(n-1)+3/4}
    =(9/4)(6/7)^(n-1)-3・(4/5)^(n-1)+(3/4)(2/3)^(n-1)


    (i)n≧4のとき
    P[n]=R[4,2]q[n-2]
    =(3/4)(6/7)^(n-3)-(4/5)^(n-3)+(1/4)(2/3)^(n-3)
    (ii)n=1,2,3のとき
    箱を空にするには最低4回問題の行動をする必要があるので
    P[n]=0
    (もっと簡単な方法があるかもしれません。)
引用返信/返信 [メール受信/OFF]
■51982 / ResNo.2)  Re[2]: 確率
□投稿者/ ピザ 一般人(2回)-(2022/10/14(Fri) 10:36:45)
    有り難うございます。
    感激です。
引用返信/返信 [メール受信/OFF]
■51984 / ResNo.3)  Re[2]: 確率
□投稿者/ nacky 一般人(1回)-(2022/10/18(Tue) 11:26:05)
    No51978に返信(Xさんの記事)
    > 求める確率をP[n]とします。
    >
    > ある1回の行動の前後で箱の中の玉の個数が
    > k[個](k=2,4,6,8)からk-2[個]になる確率をR[k,k-2]とすると
    > R[8,6]=4/(8C2)=1/7
    > R[6,4]=3/(6C2)=1/5
    > R[4,2]=2/(4C2)=1/3
    > R[2,0]=1
    > ∴箱の中の玉の個数が
    > l回目の行動の前後で8個から6個に
    > l+m回目の行動の前後で6個から4個に
    > なり、
    > n回目(n≧2)の行動終了まで4個のまま
    > である確率をQ[n,l,m]とすると
    > Q[n,l,m]={R[8,6](1-R[8,6])^(l-1)}{R[6,4](1-R[6,4])^(m-1)}{1-R[4,2]}^(n-l-m)
    > ={(1/7)(6/7)^(l-1)}{(1/5)(4/5)^(m-1)}(2/3)^(n-l-m)
    > ={(1/7)(6/7)^(l-1)}{(1/5)(4/5)^(m-1)}{(2/3)^n}(3/2)^(l+m)
    > ={(1/7)(9/7)^(l-1)}{(1/5)(6/5)^(m-1)}{(2/3)^n}(3/2)^2
    > =(9/140){(9/7)^(l-1)}{(6/5)^(m-1)}(2/3)^n
    >
    > よってn回目の行動後に箱の中に4個の玉がある確率をq[n](n≧2)とすると
    > q[n]=Σ[l=1〜n-1]Σ[m=1〜n-l]Q[n,l,m]
    > =Σ[l=1〜n-1]Σ[m=1〜n-l](9/140){(9/7)^(l-1)}{(6/5)^(m-1)}(2/3)^n
    > =(9/140){(2/3)^n}{Σ[l=1〜n-1]{(9/7)^(l-1)}}Σ[m=1〜n-l](6/5)^(m-1)
    > =(9/28){(2/3)^n}Σ[l=1〜n-1]{(9/7)^(l-1)}{(6/5)^(n-l)-1}
    > =(9/28){(2/3)^n}Σ[l=1〜n-1]{(5/6){(6/5)^n}{(5/6)^(l-1)}(9/7)^(l-1)-(9/7)^(l-1)}
    > =(9/28){(2/3)^n}{Σ[l=1〜n-1]{(5/6){(6/5)^n}(15/14)^(l-1)-(9/7)^(l-1)}
    > =(9/28){(2/3)^n}{(35/3){(6/5)^n}{(15/14)^(n-1)-1}-(7/2){(9/7)^(n-1)-1}}
    > =(9/28){(2/3)^n}{(35/3){(6/5)(9/7)^(n-1)-(6/5)^n}-(7/2)(9/7)^(n-1)+7/2}
    > =(3/14){(2/3)^(n-1)}{14・(9/7)^(n-1)-14・(6/5)^(n-1)-(7/2)(9/7)^(n-1)+7/2}
    > =(3/2){(2/3)^(n-1)}{2・(9/7)^(n-1)-2・(6/5)^(n-1)-(1/2)(9/7)^(n-1)+1/2}
    > =(3/2){(2/3)^(n-1)}{(3/2)(9/7)^(n-1)-2・(6/5)^(n-1)+1/2}
    > ={(2/3)^(n-1)}{(9/4)(9/7)^(n-1)-3・(6/5)^(n-1)+3/4}
    > =(9/4)(6/7)^(n-1)-3・(4/5)^(n-1)+(3/4)(2/3)^(n-1)
    >
    > ∴
    > (i)n≧4のとき
    > P[n]=R[4,2]q[n-2]
    > =(3/4)(6/7)^(n-3)-(4/5)^(n-3)+(1/4)(2/3)^(n-3)
    > (ii)n=1,2,3のとき
    > 箱を空にするには最低4回問題の行動をする必要があるので
    > P[n]=0
    > (もっと簡単な方法があるかもしれません。)


    1回目に (2,3) が取り出された場合,1 が今後取り出されることがなくなるので箱からすべての玉が取り出されることがなくなります。
    この計算では個数のみを気にしていて取り出され方が加味されていないようなので先の例が起こることが加味されていません。
    おそらくこの計算よりさらに複雑になります。
引用返信/返信 [メール受信/OFF]
■51989 / ResNo.4)  Re[1]: 確率
□投稿者/ X 一般人(4回)-(2022/10/20(Thu) 18:17:48)
    >>nackyさんへ
    ご指摘ありがとうございます。
    >>ピザさんへ
    もう見ていないかもしれませんが、ごめんなさい。
    nackyさんの仰る通りです。
    私の回答は無視して下さい。
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-4]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■51983 / 親記事)  行列のノルム
□投稿者/ 学生 一般人(1回)-(2022/10/17(Mon) 17:50:00)
    sup(v≠0)|Av|/|v|=sup(|v|=1)|Av|
    Aを複素数成分のk次正方行列とする
    vは数ベクトル空間C^kを動く
    これの証明をx=y&#8644;x<=yかつy<=xのような形の証明を教えてください
引用返信/返信 [メール受信/OFF]

▽[全レス2件(ResNo.1-2 表示)]
■51985 / ResNo.1)  Re[1]: 行列のノルム
□投稿者/ nacky 一般人(2回)-(2022/10/18(Tue) 11:40:49)
    まず実数からなる集合 となっているとき が成り立つので

    が成り立つ.

    また を任意にとると上限の定義よりある について

    が成り立つ. ここで とおくと であり

    が成り立つ. は任意だったので と極限をとると

    が得られる.

    ちなみにですが実際は

    であることから求める等式は得られます.
引用返信/返信 [メール受信/OFF]
■51986 / ResNo.2)  Re[2]: 行列のノルム
□投稿者/ 学生 一般人(2回)-(2022/10/18(Tue) 12:28:20)
    解答ありがとうございます。
    とても理解しやすかったです。
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-2]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■51979 / 親記事)  不定積分
□投稿者/ 積分 一般人(1回)-(2022/10/13(Thu) 12:42:40)
    ∫dx/√(x-√(x^2-1))を教えて下さい
引用返信/返信 [メール受信/OFF]

▽[全レス2件(ResNo.1-2 表示)]
■51980 / ResNo.1)  Re[1]: 不定積分
□投稿者/ らすかる 一般人(9回)-(2022/10/13(Thu) 14:21:12)
    t=√(x-√(x^2-1))とおくと
    x=(t^4+1)/(2t^2)
    dx=(t^4-1)/t^3 dt
    となるので
    ∫dx/√(x-√(x^2-1))
    =∫(t^4-1)/t^4 dt
    =t+1/(3t^3)+C
    =√(x-√(x^2-1))+1/{3(x-√(x^2-1))^(3/2)}+C

引用返信/返信 [メール受信/OFF]
■51981 / ResNo.2)  Re[2]: 不定積分
□投稿者/ 積分 一般人(2回)-(2022/10/13(Thu) 15:13:24)
    なるほど…
    このように大胆に置換すればよかったわけですか

    ありがとうございました
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-2]



■記事リスト / ▲上のスレッド
■51975 / 親記事)  解析学
□投稿者/ 数学を勉強する者 一般人(1回)-(2022/10/11(Tue) 15:22:20)
    (1-z)^(-k-1)=Σ(n=k→∞)(n,k)z^(n-k)
    (n,k)は二項係数
    kは0以上の整数で、開円板B(0;1)で成り立つことの証明を教えてください。
引用返信/返信 [メール受信/ON]

▽[全レス1件(ResNo.1-1 表示)]
■51977 / ResNo.1)  Re[1]: 解析学
□投稿者/ なか卯 一般人(1回)-(2022/10/11(Tue) 20:46:54)
    (1/(1-z))^(k+1)
    =(1+z+z^2+z^3+z^4+z^5+…)^(k+1)
    =(k,k)+(k+1,k)z+(k+2,k)z^2+(k+3,3)z^3+(k+4,k)z^4+(k+5,5)z^5+…
    =Σ[n=k→∞](n,k)z^(n-k)

    となります。
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-1]






Mode/  Pass/

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

- Child Tree -
Edit By 数学ナビゲーター