数学ナビゲーター掲示板

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

■ 過去ログ検索の勧め⇒ここを読んでみてください
google検索

 
この掲示板の過去ログをgoogleで検索します。
検索条件:
現在のログを検索過去のログを検索
■ 2006/2/20より、累計:、本日:、昨日:
数式の記述方法
TeX入力ができます。 \[ TeX形式数式 \] あるいは,$ TeX形式数式 $ で数式を記述します。
 TeX形式数式には半角英数字のみです。詳しくは、ここを見てください。文字化けが発生したときはここを見てください。
■ 質問をする方は、回答者に失礼のないようにお願いします。
携帯電話でこの掲示板を見れるようにしました。⇒ここを見てください。
■ 24時間以内に作成されたスレッドは New で表示されます。
■ 24時間以内に更新されたスレッドは UpDate で表示されます。

記事リスト ( )内の数字はレス数
Nomal高校数学 期待値の問題です(2) | Nomal二項係数(1) | Nomalフェルマーの最終定理の普通の証明(10) | Nomal高校数学レベルの定積分(2) | Nomal場合の数 (カタラン数に関係したもの)(2) | Nomal和文差分を利用した数列について(1) | Nomal面積体積表面積です。(2) | Nomal確率の基礎問題(1) | Nomal微積分(1) | Nomal整数の方程式(1) | Nomal確率の最大値(0) | Nomal至急お願いします(2) | Nomal不等式(3) | Nomal場合の数(2) | Nomalζ関数(0) | Nomal平方数(3) | Nomal形式的べき級数(0) | NomalG(0) | Nomal岩波講座基礎数学集合の補題6.1についての質問(1) | Nomal羅生門(0) | Nomal確率(2) | Nomal約数の個数(5) | Nomal52545の「約数の個数」の式変形について(4) | Nomal不等式(0) | Nomal素因数の個数について(2) | Nomal場合の数(1) | Nomal体(3) | Nomal部分分数分解(3) | Nomal約数(0) | Nomal線形代数の微分(1) | Nomal数珠順列(0) | Nomaleは無理数だけど(0) | Nomal素数(2) | Nomal(削除)(1) | Nomalフーリエ級数展開・フーリエ変換(2) | Nomal線形代数(1) | Nomal無限和(7) | Nomal進数の表現(4) | Nomal高校数学 整数問題(4) | Nomal整数の表現の同値証明(4) | Nomal多項式の既約性(0) | Nomal円錐台の断面積(9) | Nomal相関係数と共分散(1) | Nomallogの計算(3) | Nomaltan(z) を z = π/2 中心にローラン展開する(2) | Nomal複素数平面(1) | Nomal複素数 証明(難)(0) | Nomal確率の問題が分かりません 助けてください(1) | Nomal極限(3) | Nomalメビウス変換(0) | Nomal複素数 写像 (0) | Nomal複素数平面(0) | Nomal解答を教えてください(1) | Nomal解答を教えてください(0) | Nomal解答を教えてください(0) | Nomal解答を教えてください(0) | Nomal解答を教えてください(0) | Nomal確率の不等式(1) | Nomal無理関数の積分(大学)(2) | Nomal複素数(1) | Nomal確率(2) | Nomal囲まれた面積(2) | Nomal複素数(2) | Nomal微分可能な点を求める問題(1) | Nomal初等数学によるフェルマーの最終定理の証明(5) | Nomal極限の問題 2改(1) | Nomal極限の問題2(1) | Nomal極限の問題(1) | Nomal多項式の整除(1) | Nomal三角形(1) | Nomal三角数の和(0) | Nomalコラッツ予想(0) | Nomal平方数(1) | Nomal整数問題(1) | Nomal低レベルな問題ですいません(2) | Nomal中学数学によるフェルマーの最終定理の証明(1) | Nomalガウス整数の平方和(8) | Nomal環でしょうか(2) | Nomal三角関数の式(0) | Nomal大学数学 位相数学(1) | Nomal確率(1) | Nomal1/{z^2(z-1)^2} z=0でローラン展開(1) | Nomal速度(2) | Nomali^iについて(2) | Nomal(x+1)^n-x^n(1) | Nomal定積分(1) | Nomal複素数平面(6) | Nomal円に内接する四角形(2) | Nomal不等式(4) | Nomal代数学(1) | Nomal極限(0) | Nomal大学数学(0) | Nomal三角形(2) | Nomal多項式(1) | Nomal有限体(0) | Nomal場合の数(2) | Nomal同値関係が分かりません(0) | Nomal素因数(1) | Nomal質問(2) | Nomal周期関数(1) |



■記事リスト / ▼下のスレッド
■52426 / 親記事)  極限の問題 2改
□投稿者/ むぎ 一般人(7回)-(2023/12/30(Sat) 17:22:40)
    この問題の解法を教えていただきたいです。極限の問題です
2144×764 => 250×89

1703924560.jpg
/195KB
引用返信/返信 [メール受信/OFF]

▽[全レス1件(ResNo.1-1 表示)]
■52428 / ResNo.1)  Re[1]: 極限の問題 2改
□投稿者/ X 一般人(6回)-(2023/12/30(Sat) 18:08:45)
    2023/12/30(Sat) 18:11:16 編集(投稿者)

    1/x=tと置くと
    (与式)=lim[t→∞]t/e^t
    ここで
    f(t)=e^t-{1+t+(1/2)t^2}
    と置くと
    f'(t)=e^t-1-t
    f"(t)=e^t-1
    ∴t≧0において
    f"(t)≧0ゆえf'(t)は単調増加
    ∴f'(t)≧f(0)=0
    ∴f(t)も単調増加となり
    f(t)≧f(0)=0
    ∴e^t≧1+t+(1/2)t^2
    となるので
    0<t/e^t≦t/{1+t+(1/2)t^2}=1/(1/t+1+t/2)
    よってはさみうちの原理により
    (与式)=0
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-1]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■52423 / 親記事)  極限の問題2
□投稿者/ むぎ 一般人(2回)-(2023/12/30(Sat) 17:08:57)
    この問題の解法を教えていただきたいです
1907×860 => 250×112

S__137854994_0.jpg
/125KB
引用返信/返信 [メール受信/OFF]

▽[全レス1件(ResNo.1-1 表示)]
■52427 / ResNo.1)  Re[1]: 極限の問題2
□投稿者/ WIZ 一般人(15回)-(2023/12/30(Sat) 17:33:48)
    2023/12/30(Sat) 22:36:53 編集(投稿者)

    πを以下の様な無限級数と考えます。
    π = 3.1415・・・
    = 3+1/10+4/(10^2)+1/(10^3)+5/(10^4)+・・・

    ここでπを10進小数で表した時の各桁の数字を数列と見なし、
    a[0] = 3, a[1] = 1, a[2] = 4, a[3] = 1, a[4] = 5, ・・・
    とすれば、
    π = Σ[k=0,∞]{a[k]/(10^k)} = Σ[k=0,∞]{a[k](10^(-k))}
    と表せます。

    lim[n→∞]{[(10^n)π]/(10^n)}
    = lim[n→∞]{[(10^n)Σ[k=0,∞]{a[k](10^(-k))}]/(10^n)}
    = lim[n→∞]{[Σ[k=0,∞]{a[k](10^(n-k))}]/(10^n)}

    ガウスの記号の中の小数部分、つまり正で1未満となる部分は無視できますから、
    # 厳密には、lim[n→∞]{[Σ[k=0,∞]{a[k](10^(n-k))}]/(10^n)}において、
    # k > nの部分の和は、
    # Σ[k=n+1,∞]{a[k](10^(n-k))} < Σ[k=1,∞]{9*(10^(-k))} = 9*(1/10)/(1-(1/10)) = 1
    # なので、ガウスの記号内のΣ[k=n+1,∞]{a[k](10^(n-k))}の値は無視できるということです。

    lim[n→∞]{[Σ[k=0,∞]{a[k](10^(n-k))}]/(10^n)}
    = lim[n→∞]{(Σ[k=0,n]{a[k](10^(n-k))})/(10^n)}
    = lim[n→∞]{Σ[k=0,n]{a[k](10^(-k))}}
    = π
    となります。


引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-1]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■52421 / 親記事)  極限の問題
□投稿者/ むぎ 一般人(1回)-(2023/12/30(Sat) 17:03:21)
    写真の問題の解き方を教えていただきたいです。
1668×982 => 250×147

1703923401.jpg
/158KB
引用返信/返信 [メール受信/OFF]

▽[全レス1件(ResNo.1-1 表示)]
■52425 / ResNo.1)  Re[1]: 極限の問題
□投稿者/ むぎ 一般人(6回)-(2023/12/30(Sat) 17:20:29)
    こちらの問題は間違っていました失礼しました。
解決済み!
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-1]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■52351 / 親記事)  多項式の整除
□投稿者/ Reddit 一般人(1回)-(2023/10/09(Mon) 20:00:00)
    P(x)を整数係数モニック多項式とする。
    このときどのような整数係数多項式f(x)に対しても
    ある整数係数モニック多項式F(x)が存在して
    F(f(x))はP(x)で割り切れるようにできる
    ということの証明を教えて下さい。
引用返信/返信 [メール受信/OFF]

▽[全レス1件(ResNo.1-1 表示)]
■52422 / ResNo.1)  Re[1]: 多項式の整除
□投稿者/ WIZ 一般人(14回)-(2023/12/30(Sat) 17:08:32)
    代数学の基本定理により、nを自然数、a[1]〜a[n]を複素数として、
    P(x) = Π[k=1, n](x-a[k])
    と書ける。
    P(x)が整数係数だから、a[1]〜a[n]の中に虚数があれば、その共役数もa[1]〜a[n]の中に含まれている。
    # P(x)が整数係数モニックだから、a[1]〜a[n]は代数的整数であり、
    # ノルムとシュプール(トレース)は有理数の整数である。

    すると、
    F(x) = Π[k=1, n](x-f(a[k]))
    とすれば、P(x) = 0の解は重複度も含めて全てF(f(x)) = 0の解であるので、
    F(f(x)) = Π[k=1, n](f(x)-f(a[k]))はP(x)で割り切れる。

    a[i]とa[j]が複素共役なら、f(x)が整数係数なのでf(a[i])とf(a[j])も複素共役となる。
    よって、F(x)は整数係数モニックであり、F(f(x))はモニックとは限らないが整数係数である。

    # 勘違いしてたらごめんなさい!
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-1]



■記事リスト / ▲上のスレッド
■52415 / 親記事)  三角形
□投稿者/ バイアス 一般人(1回)-(2023/12/28(Thu) 16:47:35)
    △OABにおいて角Oの大きさをθラジアンとする。
    2AB>(1-cosθ)(OA+OB)
    が成り立つことを示せ。

    教えて下さい。
引用返信/返信 [メール受信/OFF]

▽[全レス1件(ResNo.1-1 表示)]
■52420 / ResNo.1)  Re[1]: 三角形
□投稿者/ X 一般人(5回)-(2023/12/30(Sat) 07:59:07)
    2023/12/30(Sat) 09:09:48 編集(投稿者)

    2AB>(1-cosθ)(OA+OB)⇔2sinθ>(1-cosθ)(sinA+sinB) (∵)正弦定理
    ⇔2sin(A+B)>{1+cos(A+B)}(sinA+sinB) (A)
    ∴(A)を証明します。

    ((A)の左辺)-((A)の右辺)=2sin(A+B)-{1+cos(A+B)}(sinA+sinB)
    =2sin(A+B)-4sin{(A+B)/2}cos{(A-B)/2}{cos{(A+B)/2}}^2
    ((∵)和積の公式と半角の公式)
    =2sin(A+B)-2sin(A+B)cos{(A-B)/2}cos{(A+B)/2}
    =2sin(A+B){1-cos{(A-B)/2}cos{(A+B)/2}} (B)
    ここで
    0<A<π,0<B<π,0<θ<π (P)
    A+B+θ=π (Q)

    0<A+B<π
    なので
    sin(A+B)>0 (C)
    更に(P)(Q)より
    0<(A+B)/2<π/2
    -π/2<(A-B)/2<π/2
    又、
    (A+B)/2=(A-B)/2=0
    とはなりえないので
    cos{(A-B)/2}cos{(A+B)/2}<1 (D)
    (C)(D)より
    (B)>0
    よって(A)は成立します。
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-1]






Mode/  Pass/

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

- Child Tree -
Edit By 数学ナビゲーター