数学ナビゲーター掲示板

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

■ 過去ログ検索の勧め⇒ここを読んでみてください
google検索

 
この掲示板の過去ログをgoogleで検索します。
検索条件:
現在のログを検索過去のログを検索
■ 2006/2/20より、累計:、本日:、昨日:
数式の記述方法
TeX入力ができます。 \[ TeX形式数式 \] あるいは,$ TeX形式数式 $ で数式を記述します。
 TeX形式数式には半角英数字のみです。詳しくは、ここを見てください。文字化けが発生したときはここを見てください。
■ 質問をする方は、回答者に失礼のないようにお願いします。
携帯電話でこの掲示板を見れるようにしました。⇒ここを見てください。
■ 24時間以内に作成されたスレッドは New で表示されます。
■ 24時間以内に更新されたスレッドは UpDate で表示されます。

記事リスト ( )内の数字はレス数
Nomal高校数学 期待値の問題です(2) | Nomal二項係数(1) | Nomalフェルマーの最終定理の普通の証明(10) | Nomal高校数学レベルの定積分(2) | Nomal場合の数 (カタラン数に関係したもの)(2) | Nomal和文差分を利用した数列について(1) | Nomal面積体積表面積です。(2) | Nomal確率の基礎問題(1) | Nomal微積分(1) | Nomal整数の方程式(1) | Nomal確率の最大値(0) | Nomal至急お願いします(2) | Nomal不等式(3) | Nomal場合の数(2) | Nomalζ関数(0) | Nomal平方数(3) | Nomal形式的べき級数(0) | NomalG(0) | Nomal岩波講座基礎数学集合の補題6.1についての質問(1) | Nomal羅生門(0) | Nomal確率(2) | Nomal約数の個数(5) | Nomal52545の「約数の個数」の式変形について(4) | Nomal不等式(0) | Nomal素因数の個数について(2) | Nomal場合の数(1) | Nomal体(3) | Nomal部分分数分解(3) | Nomal約数(0) | Nomal線形代数の微分(1) | Nomal数珠順列(0) | Nomaleは無理数だけど(0) | Nomal素数(2) | Nomal(削除)(1) | Nomalフーリエ級数展開・フーリエ変換(2) | Nomal線形代数(1) | Nomal無限和(7) | Nomal進数の表現(4) | Nomal高校数学 整数問題(4) | Nomal整数の表現の同値証明(4) | Nomal多項式の既約性(0) | Nomal円錐台の断面積(9) | Nomal相関係数と共分散(1) | Nomallogの計算(3) | Nomaltan(z) を z = π/2 中心にローラン展開する(2) | Nomal複素数平面(1) | Nomal複素数 証明(難)(0) | Nomal確率の問題が分かりません 助けてください(1) | Nomal極限(3) | Nomalメビウス変換(0) | Nomal複素数 写像 (0) | Nomal複素数平面(0) | Nomal解答を教えてください(1) | Nomal解答を教えてください(0) | Nomal解答を教えてください(0) | Nomal解答を教えてください(0) | Nomal解答を教えてください(0) | Nomal確率の不等式(1) | Nomal無理関数の積分(大学)(2) | Nomal複素数(1) | Nomal確率(2) | Nomal囲まれた面積(2) | Nomal複素数(2) | Nomal微分可能な点を求める問題(1) | Nomal初等数学によるフェルマーの最終定理の証明(5) | Nomal極限の問題 2改(1) | Nomal極限の問題2(1) | Nomal極限の問題(1) | Nomal多項式の整除(1) | Nomal三角形(1) | Nomal三角数の和(0) | Nomalコラッツ予想(0) | Nomal平方数(1) | Nomal整数問題(1) | Nomal低レベルな問題ですいません(2) | Nomal中学数学によるフェルマーの最終定理の証明(1) | Nomalガウス整数の平方和(8) | Nomal環でしょうか(2) | Nomal三角関数の式(0) | Nomal大学数学 位相数学(1) | Nomal確率(1) | Nomal1/{z^2(z-1)^2} z=0でローラン展開(1) | Nomal速度(2) | Nomali^iについて(2) | Nomal(x+1)^n-x^n(1) | Nomal定積分(1) | Nomal複素数平面(6) | Nomal円に内接する四角形(2) | Nomal不等式(4) | Nomal代数学(1) | Nomal極限(0) | Nomal大学数学(0) | Nomal三角形(2) | Nomal多項式(1) | Nomal有限体(0) | Nomal場合の数(2) | Nomal同値関係が分かりません(0) | Nomal素因数(1) | Nomal質問(2) | Nomal周期関数(1) |



■記事リスト / ▼下のスレッド
■50697 / 親記事)  放物線の標準形
□投稿者/ 星は昴 一般人(1回)-(2021/04/05(Mon) 13:31:03)
    4x^2-4xy+y^2-10x-20y=0

    をソフトで描かせたら放物線のようです。これをy軸に対称なように標準化した式にするにはどうしたらいいですか。
引用返信/返信 [メール受信/OFF]

▽[全レス4件(ResNo.1-4 表示)]
■50698 / ResNo.1)  Re[1]: 放物線の標準形
□投稿者/ らすかる 一般人(27回)-(2021/04/05(Mon) 17:29:03)
    軸がy=2xですから、
    x=(2X+Y)/√5
    y=(-X+2Y)/√5
    を代入して回転して整理すると
    Y=X^2/(2√5)
    となります。

引用返信/返信 [メール受信/OFF]
■50699 / ResNo.2)  Re[2]: 放物線の標準形
□投稿者/ 星は昴 一般人(3回)-(2021/04/05(Mon) 18:57:28)
     回答ありがとうございます。
      4x^2-4xy+y^2-10x-20y=0 ・・・・・(1)
    が、y=2xを軸とする放物線であることはどうやって見抜けばいいのでしょうか。

     教科書には離心率をeとするとき二次曲線の一般式
      (1-e^2)x^2+y^2-2p(1+e^2)x+p^2(1-e^2)=0 ・・・・・(2)
    というのがありますが、これでは(1)が放物線であるかどうか判断できないと思うのですが。

引用返信/返信 [メール受信/OFF]
■50700 / ResNo.3)  Re[3]: 放物線の標準形
□投稿者/ らすかる 一般人(28回)-(2021/04/05(Mon) 21:16:32)
    二次の項を因数分解すると(2x-y)^2となりますので、
    X=(2x-y)/√5, Y=(x+2y)/√5のようにおいて回転すると
    Xの項は2次、Yの項は1次となり、軸が2x-y=0に平行な
    放物線であることがわかります。
    下に書かれている「二次曲線の一般式」は、回転を含まない
    特定の場合の一般式なので、この問題では使えないと思います。
    また、回転してその「一般式」に合わせたいのであれば、軸がx軸に合うように
    x=(X-2Y)/√5, y=(2X+Y)/√5で逆方向に回転する必要があります。

引用返信/返信 [メール受信/OFF]
■50701 / ResNo.4)  Re[4]: 放物線の標準形
□投稿者/ 星は昴 一般人(4回)-(2021/04/05(Mon) 21:33:27)
    ありがとうございました。なかなか難しいのですね。

引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-4]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■50684 / 親記事)  循環小数
□投稿者/ 混合 一般人(1回)-(2021/04/02(Fri) 11:00:49)
    nを自然数とすると
    1/(n+1)+1/(n+2)+1/(n+3)
    は混合循環小数であることを示せ。

    教えて下さい。
引用返信/返信 [メール受信/OFF]

▽[全レス2件(ResNo.1-2 表示)]
■50690 / ResNo.1)  Re[1]: 循環小数
□投稿者/ らすかる 一般人(24回)-(2021/04/03(Sat) 06:28:03)
    有理数のうち
    分母が2,5以外の素因数を持たない→有限小数
    分母が2,5以外の素因数を持つ→無限小数
    そして有理数の無限小数のうち
    分母が素因数2,5を含まない→純循環小数
    分母が素因数2,5を含む→混循環小数
    です。
    与式はn+1,n+2,n+3のうちどれか一つが3の倍数、
    また偶数も含むことから、
    「2,5以外の素因数3を含み、素因数2も含む」
    となりますので、混循環小数ということになります。

引用返信/返信 [メール受信/OFF]
■50696 / ResNo.2)  Re[2]: 循環小数
□投稿者/ 混合 一般人(2回)-(2021/04/04(Sun) 13:47:14)
    とても分かりやすい説明ありがとうございました。
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-2]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■50691 / 親記事)  四角形の辺の長さ
□投稿者/ sage 一般人(4回)-(2021/04/03(Sat) 12:19:15)
    調べたらどこかに絶対載ってそうな気がするんですが
    検索が追いつかず・・・教えてください

    a,b,c,dは実数で、以下の二つの条件を満たしている
    ・a,b,c,dは四角形の四辺の長さである
    ・a≧b≧c≧d
    a,b,c,dをこの条件を満たしながら変化させたときの
    min{a/b,b/c,c/d}
    の取り得る値の範囲はどうなるか?

    四角形から適当にふたつの辺を選んで
    長いのを短いので割ったときの最小値
    はどこまで大きくなるか
    ということなのですが・・・
引用返信/返信 [メール受信/OFF]

▽[全レス2件(ResNo.1-2 表示)]
■50692 / ResNo.1)  Re[1]: 四角形の辺の長さ
□投稿者/ らすかる 一般人(25回)-(2021/04/03(Sat) 12:35:21)
    1≦min{a/b,b/c,c/d}<c
    ただしcはc^3=c^2+c+1を満たす値で
    c={(19+3√33)^(1/3)+(19-3√33)^(1/3)+1}/3=1.83928675…
    となると思います。
    最小値は正方形の場合で明らか
    最大値は(最大値をとることはありませんが)例えば
    A(0,0),B(1,ε),C(c+1,ε),D(c^2+c+1,0)
    のように最大辺のすぐ近くに他の3辺が並ぶ場合です。

引用返信/返信 [メール受信/OFF]
■50695 / ResNo.2)  Re[2]: 四角形の辺の長さ
□投稿者/ sage 一般人(5回)-(2021/04/03(Sat) 21:05:13)
    確認できました!
    有難うございました!
解決済み!
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-2]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■50682 / 親記事)  三角形の角
□投稿者/ 磯村 一般人(1回)-(2021/04/02(Fri) 08:43:11)
    三角形ABCにおいて、AB=2,BC=1,CA=√2とし、∠A=α,∠B=βとする。
    正の整数m,nがmα+nβ=πを満たすとき、mとnを全て求めよ。

    m=2,n=3は見つけられたのですが、これ以外にあるのかこれだけなのかがよく分かりませんでした。
    教えてください。
引用返信/返信 [メール受信/OFF]

▽[全レス3件(ResNo.1-3 表示)]
■50683 / ResNo.1)  Re[1]: 三角形の角
□投稿者/ らすかる 一般人(22回)-(2021/04/02(Fri) 09:59:41)
    cosα=5√2/8, sinα=√14/8
    cos2α=9/16, sin2α=5√7/16
    cos3α=5√2/64, sin3α=17√14/64
    cos4α=-47/128, sin4α=45√7/128
    cos5α=-275√2/512, sin5α=89√14/512
    cos6α=-999/1024, sin6α=85√7/1024
    sin7α<0

    cosβ=3/4, sinβ=√7/4
    cos2β=1/8, sin2β=3√7/8
    cos3β=-9/16, sin3β=5√7/16
    cos4β=-31/32, sin4β=3√7/32
    sin5β<0

    mα+nβ=πのとき
    mα=π-nβ
    sin(mα)=sin(π-nβ)=sin(nβ)
    cos(mα)=cos(π-nβ)=-cos(nβ)
    でなければならないので、m=2,n=3のみ。

引用返信/返信 [メール受信/OFF]
■50685 / ResNo.2)  Re[2]: 三角形の角
□投稿者/ 磯村 一般人(2回)-(2021/04/02(Fri) 11:01:09)
    有り難うございます。
    やはりしっかり計算して考える必要がありそうですね。。。
引用返信/返信 [メール受信/OFF]
■50686 / ResNo.3)  Re[3]: 三角形の角
□投稿者/ らすかる 一般人(23回)-(2021/04/02(Fri) 21:50:16)
    cosα=5√2/8, sinα=√14/8 から tanα=√7/5
    cosβ=3/4, sinβ=√7/4 から tanβ=√7/3
    t(x)=tanx/√7とおくとt(a+b)={t(a)+t(b)}/{1-7t(a)t(b)}
    t(α)=1/5, t(2α)=5/9, t(3α)=17/5, t(4α)=-45/47,
    t(5α)=-89/275, t(6α)=-85/999, t(7α)>0
    t(β)=1/3, t(2β)=3, t(3β)=-5/9, t(4β)=-3/31, t(5β)>0
    なので
    tan(mα)+tan(nβ)=0すなわちt(mα)+t(nβ)=0となるのはm=2,n=3のみ

    のようにすると計算がいくぶん簡単になりますが、これでも面倒ですね。

引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-3]



■記事リスト / ▲上のスレッド
■50677 / 親記事)  有理数と素数
□投稿者/ ぽる塾 一般人(1回)-(2021/03/26(Fri) 10:45:09)
    正の有理数rでどのような素数p,qに対しても
    r≠(p+1)/(q+1)
    であるrの例をなにかひとつ教えてください。
引用返信/返信 [メール受信/OFF]

▽[全レス1件(ResNo.1-1 表示)]
■50678 / ResNo.1)  Re[1]: 有理数と素数
□投稿者/ らすかる 一般人(21回)-(2021/03/26(Fri) 14:17:12)
    なさそうな気がしますが、あるんですか?
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-1]






Mode/  Pass/

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

- Child Tree -
Edit By 数学ナビゲーター