数学ナビゲーター掲示板

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

■ 過去ログ検索の勧め⇒ここを読んでみてください
google検索

 
この掲示板の過去ログをgoogleで検索します。
検索条件:
現在のログを検索過去のログを検索
■ 2006/2/20より、累計:、本日:、昨日:
数式の記述方法
TeX入力ができます。 \[ TeX形式数式 \] あるいは,$ TeX形式数式 $ で数式を記述します。
 TeX形式数式には半角英数字のみです。詳しくは、ここを見てください。文字化けが発生したときはここを見てください。
■ 質問をする方は、回答者に失礼のないようにお願いします。
携帯電話でこの掲示板を見れるようにしました。⇒ここを見てください。
■ 24時間以内に作成されたスレッドは New で表示されます。
■ 24時間以内に更新されたスレッドは UpDate で表示されます。

記事リスト ( )内の数字はレス数
UpDate高校数学 確率の問題です。(1) | Nomal(x^x)^x = x^(x^2)(4) | Nomal数字が重複しない積(1) | Nomalイデアル(0) | Nomal自然数(2) | Nomal余り(2) | Nomalフェルマーの最終定理の証明(65) | Nomal有限小数(1) | Nomalklog(1+1/k) < 1を証明する(2) | Nomal積分の極限(3) | Nomal平方数と素数(2) | Nomal漸化式と不等式(1) | Nomal約数(1) | Nomal整数問題(4) | Nomal期待値(2) | Nomal定積分(4) | Nomal確率(0) | Nomaln乗根(1) | Nomallim[θ→0](θ/sinθ)(2) | Nomal常微分方程式の基本的な質問(2) | Nomal単位円と正三角形(2) | Nomal証明 微積(0) | Nomal台形(1) | Nomal設問ミスですか?それとも解けますか?(1) | Nomal二次関数(1) | Nomalコラッツ予想(0) | Nomalζ関数(1) | Nomal(削除)(0) | Nomal高校数学 期待値の問題です(2) | Nomal二項係数(1) | Nomalフェルマーの最終定理の普通の証明(10) | Nomal高校数学レベルの定積分(2) | Nomal場合の数 (カタラン数に関係したもの)(2) | Nomal和文差分を利用した数列について(1) | Nomal面積体積表面積です。(2) | Nomal確率の基礎問題(1) | Nomal微積分(1) | Nomal整数の方程式(1) | Nomal確率の最大値(0) | Nomal至急お願いします(2) | Nomal不等式(3) | Nomal場合の数(2) | Nomal平方数(3) | Nomal形式的べき級数(0) | NomalG(0) | Nomal岩波講座基礎数学集合の補題6.1についての質問(1) | Nomal羅生門(0) | Nomal確率(2) | Nomal約数の個数(5) | Nomal52545の「約数の個数」の式変形について(4) | Nomal不等式(0) | Nomal素因数の個数について(2) | Nomal場合の数(1) | Nomal体(3) | Nomal部分分数分解(3) | Nomal線形代数の微分(1) | Nomal数珠順列(0) | Nomaleは無理数だけど(0) | Nomal素数(2) | Nomal(削除)(1) | Nomalフーリエ級数展開・フーリエ変換(2) | Nomal線形代数(1) | Nomal無限和(7) | Nomal進数の表現(4) | Nomal高校数学 整数問題(4) | Nomal整数の表現の同値証明(4) | Nomal多項式の既約性(0) | Nomal円錐台の断面積(9) | Nomal相関係数と共分散(1) | Nomallogの計算(3) | Nomaltan(z) を z = π/2 中心にローラン展開する(2) | Nomal複素数平面(1) | Nomal複素数 証明(難)(0) | Nomal確率の問題が分かりません 助けてください(1) | Nomal極限(3) | Nomalメビウス変換(0) | Nomal複素数 写像 (0) | Nomal複素数平面(0) | Nomal解答を教えてください(1) | Nomal解答を教えてください(0) | Nomal解答を教えてください(0) | Nomal解答を教えてください(0) | Nomal解答を教えてください(0) | Nomal確率の不等式(1) | Nomal無理関数の積分(大学)(2) | Nomal複素数(1) | Nomal確率(2) | Nomal囲まれた面積(2) | Nomal複素数(2) | Nomal微分可能な点を求める問題(1) | Nomal初等数学によるフェルマーの最終定理の証明(5) | Nomal極限の問題 2改(1) | Nomal極限の問題2(1) | Nomal極限の問題(1) | Nomal多項式の整除(1) | Nomal三角形(1) | Nomal三角数の和(0) | Nomalコラッツ予想(0) | Nomal平方数(1) | Nomal整数問題(1) |



■記事リスト / ▼下のスレッド
■52591 / 親記事)  不等式
□投稿者/ 避暑 一般人(1回)-(2024/08/06(Tue) 14:53:34)
    実数x,yに対して
    2(x^2+1)(y^2+1)≧3(x+y)
    が成り立つことの証明を教えて下さい。
引用返信/返信 [メール受信/OFF]

▽[全レス3件(ResNo.1-3 表示)]
■52592 / ResNo.1)  Re[1]: 不等式
□投稿者/ らすかる 一般人(12回)-(2024/08/06(Tue) 16:43:06)
    (左辺)-(右辺)をxについて整理し平方完成する方針でいくと
    2(x^2+1)(y^2+1)-3(x+y)
    =2(y^2+1)x^2-3x+(2y^2-3y+2)
    ={x√{2(y^2+1)}-3/√{8(y^2+1)}}^2-9/(8(y^2+1))+(2y^2-3y+2)
    ={x√{2(y^2+1)}-3/√{8(y^2+1)}}^2+(16y^4-24y^3+32y^2-24y+7)/(8(y^2+1))
    ={x√{2(y^2+1)}-3/√{8(y^2+1)}}^2+{(4y^2-3y)^2+5(2y-1)^2+2(y-1)^2+y^2}/(8(y^2+1))
    ≧0

引用返信/返信 [メール受信/OFF]
■52594 / ResNo.2)  Re[2]: 不等式
□投稿者/ 避暑 一般人(2回)-(2024/08/08(Thu) 11:25:40)
    大変参考になりました。
    有難うございました。
解決済み!
引用返信/返信 [メール受信/OFF]
■52596 / ResNo.3)  Re[1]: 不等式
□投稿者/ muturajcp 一般人(4回)-(2024/08/10(Sat) 10:15:14)
    へいほうかんせい
    2(x^2+1)(y^2+1)-3(x+y)
    =2(x^2+1)(y-3/{4(x^2+1)})^2+{(4x^2-3x)^2+23(x-12/23)^2+17/23}/{8(x^2+1)}>0

858×694 => 250×202

m2024080415.jpg
/75KB
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-3]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■52588 / 親記事)  場合の数
□投稿者/ パリンピック 一般人(1回)-(2024/08/06(Tue) 08:59:02)
    ある運動競技会では、奇数2n-1人の参加者全員に、金メダル、銀メダル、銅メダルのいずれかを1枚ずつ渡します
    金メダルの人、銀メダルの人、銅メダルの人の数がすべて奇数となる渡し方は何通りですか?
引用返信/返信 [メール受信/OFF]

▽[全レス2件(ResNo.1-2 表示)]
■52590 / ResNo.1)  Re[1]: 場合の数
□投稿者/ らすかる 一般人(11回)-(2024/08/06(Tue) 11:16:27)
    求める渡し方をp[2n-1]とすると
    2n-1人に金銀銅すべて奇数となるように渡す方法はp[2n-1]通り
    偶奇関係なく渡す方法は3^(2n-1)通りなので
    金銀銅のうちどれか一つだけ奇数になるように渡す方法は3^(2n-1)-p[2n-1]通り
    最初の2n-3人に渡す方法は全部で3^(2n-3)通りあり、
    そのうち金銀銅すべて奇数であるp[2n-3]通りに対して
    残り2人に渡した結果も金銀銅すべて奇数になるためには
    残りの2人に金金・銀銀・銅銅のいずれかを渡さなければならないため
    3p[2n-3]通り
    また金銀銅のうちどれか一つだけ奇数である3^(2n-3)-p[2n-3]通りに対して
    残り2人に渡した結果が金銀銅すべて奇数になるためには
    残りの2人に偶数である2種類のメダルを渡さなければならないため
    (2人に決まった2種類のメダルを渡す方法は2通りなので)
    2(3^(2n-3)-p[2n-3])通り
    よって
    p[2n-1]={3p[2n-3]}+{2(3^(2n-3)-p[2n-3])}=2・3^(2n-3)+p[2n-3]
    =2・3^(2n-3)+2・3^(2n-5)+p[2n-5]
    =2・3^(2n-3)+2・3^(2n-5)+2・3^(2n-7)+p[2n-7]
    =・・・
    =2・3^(2n-3)+2・3^(2n-5)+2・3^(2n-7)+…+2・3^1+p[1]
    p[1]=0なので、n≧2に対して
    p[2n-1]=Σ[k=1〜n-1]2・3^(2k-1)
    ={3^(2n-1)-3}/4
    これはn=1のときも成り立つ
    従って求める渡し方は
    {3^(2n-1)-3}/4通り

引用返信/返信 [メール受信/OFF]
■52593 / ResNo.2)  Re[2]: 場合の数
□投稿者/ パリンピック 一般人(2回)-(2024/08/07(Wed) 08:27:13)
    なるほど!!
    こんな素晴らしい方法があるのですね
    ありがとうございました
解決済み!
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-2]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■52566 / 親記事)  平方数
□投稿者/ 孫子 一般人(1回)-(2024/07/10(Wed) 12:30:22)
    自然数nで3^n-2^n-1が平方数となるものをすべて求めたいのでお願いします。
引用返信/返信 [メール受信/OFF]

▽[全レス3件(ResNo.1-3 表示)]
■52569 / ResNo.1)  Re[1]: 平方数
□投稿者/ muturajcp 一般人(2回)-(2024/07/14(Sun) 17:05:55)
    3^n-2^n-1
    n=1のとき
    3^1-2^1-1=3-2-1=0は平方数
    n=2のとき
    3^2-2^2-1=9-4-1=4は平方数
    n=4のとき
    3^4-2^4-1=81-16-1=64は平方数

    nが3以上の奇数のとき
    n=2k+1となる自然数kがある
    3^(2k+1)=3(9^k)=3(8+1)^k=3(mod4)
    2^(2k+1)=2(4^k)=0(mod4)
    3^(2k+1)-2^(2k+1)-1=2(mod4)
    3^(2k+1)-2^(2k+1)-1=4m+2=2(2m+1)
    となる整数mがあるから
    3^(2k+1)-2^(2k+1)-1=2(2m+1)は平方数ではない

    nが6以上の偶数のとき
    n=2kとなる自然数kがある
    3^(2k)-2^(2k)-1
    が平方数であると仮定すると
    3^(2k)-2^(2k)-1=x^2
    となる整数xがある
    3^(2k)-2^(2k)=1+x^2
    (3^k+2^k)(3^k-2^k)=1+x^2
    右辺1+x^2は実数の範囲で分解できない既約多項式
    3^k+2^k>3^k-2^k>0だから
    3^k-2^k=1でなければならないから
    k=1
    n=2となってn≧6に矛盾するから
    3^(2k)-2^(2k)-1
    は平方数ではないから

    n=1
    n=2
    n=4
引用返信/返信 [メール受信/OFF]
■52570 / ResNo.2)  Re[1]: 平方数
□投稿者/ muturajcp 一般人(3回)-(2024/07/14(Sun) 19:11:26)
    訂正です

    3^n-2^n-1
    n=1のとき
    3^1-2^1-1=3-2-1=0
    n=2のとき
    3^2-2^2-1=9-4-1=4
    n=4のとき
    3^4-2^4-1=81-16-1=64

    nが3以上の奇数のとき
    n=2k+1となる自然数kがある
    3^(2k+1)=3(9^k)=3(8+1)^k=3(mod4)
    2^(2k+1)=2(4^k)=0(mod4)
    3^(2k+1)-2^(2k+1)-1=2(mod4)
    3^(2k+1)-2^(2k+1)-1=4m+2=2(2m+1)
    となる整数mがあるから
    3^(2k+1)-2^(2k+1)-1=2(2m+1)は平方数ではない

    n=2(2k+1)となる自然数kがあるとき
    3^{2(2k+1)}=9^(2k+1)=9(81^k)=9(16*5+1)^k=9(mod16)
    2^{2(2k+1)}=4^(2k+1)=4(16^k)=0(mod16)
    3^{2(2k+1)}-2^{2(2k+1)}-1=8(mod16)
    3^{2(2k+1)}-2^{2(2k+1)}-1=16m+8=8(2m+1)
    となる整数mがあるから
    3^{2(2k+1)}-2^{2(2k+1)}-1=8(2m+1)は平方数ではない

    n=4(2k+1)となる自然数kがあるとき
    3^{4(2k+1)}=81^(2k+1)=81(6561)^k=(32*2+17)(205*32+1)^k=17{mod(32)}
    2^{4(2k+1)}=16^(2k+1)=16(256)^k=0{mod(32)}
    3^{4(2k+1)}-2^{4(2k+1)}-1=16(mod32)
    3^{4(2k+1)}-2^{4(2k+1)}-1=(3^{2(2k+1)}+2^{2(2k+1)})(3^{2(2k+1)}-2^{2(2k+1)})-1≧3^6+2^6-1>16
    3^{4(2k+1)}-2^{4(2k+1)}-1=32m+16=16(2m+1)
    となる自然数mがあるから
    3^{4(2k+1)}-2^{4(2k+1)}-1=16(2m+1)は平方数ではない

    n=(2^j)(2k+1),j≧3,k≧0となる自然数jと整数kがあるとき

    3^{(2^j)(2k+1)}=(3^{2^j})^(2k+1)=(3^{2^j})(9^{2^j})^k=1+2^(j+2){mod(2^(j+3))}
    2^{(2^j)(2k+1)}=(2^{2^j})^(2k+1)=(2^{2^j})(4^{2^j})^k=0{mod(2^{j+3})}
    3^{(2^j)(2k+1)}-2^{(2^j)(2k+1)}-1=2^(j+2){mod(2^{j+3})}
    3^{(2^j)(2k+1)}-2^{(2^j)(2k+1)}-1=(2m+1)2^{j+2}
    となる自然数mがあるから
    3^{(2^j)(2k+1)}-2^{(2^j)(2k+1)}-1=(2m+1)2^{j+2}は平方数ではない

    n=1
    n=2
    n=4

引用返信/返信 [メール受信/OFF]
■52582 / ResNo.3)  Re[2]: 平方数
□投稿者/ 孫子 一般人(3回)-(2024/07/21(Sun) 16:45:11)
    ありがとうございました。
    とても参考になりました。
解決済み!
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-3]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■52580 / 親記事)  形式的べき級数
□投稿者/ チャウヌ 一般人(1回)-(2024/07/19(Fri) 09:06:41)
    実数係数の形式的べき級数
    (Σ[n=1→∞]c[n]t^n)(Σ[n=1→∞](t/2)^n)=Σ[n=2→∞]C[n]t^n
    においてlim[n→∞]c[n]=c(収束)であるとき
    lim[n→∞]C[n]の求め方を教えてください。
引用返信/返信 [メール受信/OFF]



■記事リスト / ▲上のスレッド
■52579 / 親記事)  G
□投稿者/ ホイホイ 一般人(1回)-(2024/07/19(Fri) 08:05:48)
    我が家の新築の豪邸に早速ゴキブリが出ました。ちょうどエクササイズ中だったので、フラフープをぶん投げました。
    はなれたところから観察していると、ゴキブリは床に落ちたフラフープの上を激しく反時計回りに等速円運動しています。
    ペットがおり殺虫スプレーが使えないので、フラフープめがけゴキブリが嫌がる香りのアロマオイルを一滴ブッかけようと思います。
    はなれたところからアロマオイル一滴をブッかけるので、狙うことはできません。フラフープの周上の一点に無作為にアロマオイルが付着します。
    ゴキブリはアロマオイルの付着した箇所から勢いを維持したままその箇所におけるフラフープの接線を直進し壁まで逃げるものと予想されます。
    そこで、あらかじめ壁に粘着テープを貼っておき、逃げてきたゴキブリを捕獲しようと思うのですが、ゴキブリを捕獲する確率を最も高めるには、粘着テープをどこに貼ればよいでしょうか?

    なるべく正確に粘着テープを貼る位置を知りたいので、
    フラフープをx^2+y^2=1、壁をx=a(≧1)、粘着テープの長さをd(>0)
    として回答していただいてもかまいません。
引用返信/返信 [メール受信/OFF]






Mode/  Pass/

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

- Child Tree -
Edit By 数学ナビゲーター