数学ナビゲーター掲示板

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

■ 過去ログ検索の勧め⇒ここを読んでみてください
google検索

 
この掲示板の過去ログをgoogleで検索します。
検索条件:
現在のログを検索過去のログを検索
■ 2006/2/20より、累計:、本日:、昨日:
数式の記述方法
TeX入力ができます。 \[ TeX形式数式 \] あるいは,$ TeX形式数式 $ で数式を記述します。
 TeX形式数式には半角英数字のみです。詳しくは、ここを見てください。文字化けが発生したときはここを見てください。
■ 質問をする方は、回答者に失礼のないようにお願いします。
携帯電話でこの掲示板を見れるようにしました。⇒ここを見てください。
■ 24時間以内に作成されたスレッドは New で表示されます。
■ 24時間以内に更新されたスレッドは UpDate で表示されます。

記事リスト ( )内の数字はレス数
Nomal高校数学 期待値の問題です(2) | Nomal二項係数(1) | Nomalフェルマーの最終定理の普通の証明(10) | Nomal高校数学レベルの定積分(2) | Nomal場合の数 (カタラン数に関係したもの)(2) | Nomal和文差分を利用した数列について(1) | Nomal面積体積表面積です。(2) | Nomal確率の基礎問題(1) | Nomal微積分(1) | Nomal整数の方程式(1) | Nomal確率の最大値(0) | Nomal至急お願いします(2) | Nomal不等式(3) | Nomal場合の数(2) | Nomalζ関数(0) | Nomal平方数(3) | Nomal形式的べき級数(0) | NomalG(0) | Nomal岩波講座基礎数学集合の補題6.1についての質問(1) | Nomal羅生門(0) | Nomal確率(2) | Nomal約数の個数(5) | Nomal52545の「約数の個数」の式変形について(4) | Nomal不等式(0) | Nomal素因数の個数について(2) | Nomal場合の数(1) | Nomal体(3) | Nomal部分分数分解(3) | Nomal約数(0) | Nomal線形代数の微分(1) | Nomal数珠順列(0) | Nomaleは無理数だけど(0) | Nomal素数(2) | Nomal(削除)(1) | Nomalフーリエ級数展開・フーリエ変換(2) | Nomal線形代数(1) | Nomal無限和(7) | Nomal進数の表現(4) | Nomal高校数学 整数問題(4) | Nomal整数の表現の同値証明(4) | Nomal多項式の既約性(0) | Nomal円錐台の断面積(9) | Nomal相関係数と共分散(1) | Nomallogの計算(3) | Nomaltan(z) を z = π/2 中心にローラン展開する(2) | Nomal複素数平面(1) | Nomal複素数 証明(難)(0) | Nomal確率の問題が分かりません 助けてください(1) | Nomal極限(3) | Nomalメビウス変換(0) | Nomal複素数 写像 (0) | Nomal複素数平面(0) | Nomal解答を教えてください(1) | Nomal解答を教えてください(0) | Nomal解答を教えてください(0) | Nomal解答を教えてください(0) | Nomal解答を教えてください(0) | Nomal確率の不等式(1) | Nomal無理関数の積分(大学)(2) | Nomal複素数(1) | Nomal確率(2) | Nomal囲まれた面積(2) | Nomal複素数(2) | Nomal微分可能な点を求める問題(1) | Nomal初等数学によるフェルマーの最終定理の証明(5) | Nomal極限の問題 2改(1) | Nomal極限の問題2(1) | Nomal極限の問題(1) | Nomal多項式の整除(1) | Nomal三角形(1) | Nomal三角数の和(0) | Nomalコラッツ予想(0) | Nomal平方数(1) | Nomal整数問題(1) | Nomal低レベルな問題ですいません(2) | Nomal中学数学によるフェルマーの最終定理の証明(1) | Nomalガウス整数の平方和(8) | Nomal環でしょうか(2) | Nomal三角関数の式(0) | Nomal大学数学 位相数学(1) | Nomal確率(1) | Nomal1/{z^2(z-1)^2} z=0でローラン展開(1) | Nomal速度(2) | Nomali^iについて(2) | Nomal(x+1)^n-x^n(1) | Nomal定積分(1) | Nomal複素数平面(6) | Nomal円に内接する四角形(2) | Nomal不等式(4) | Nomal代数学(1) | Nomal極限(0) | Nomal大学数学(0) | Nomal三角形(2) | Nomal多項式(1) | Nomal有限体(0) | Nomal場合の数(2) | Nomal同値関係が分かりません(0) | Nomal素因数(1) | Nomal質問(2) | Nomal周期関数(1) |



■記事リスト / ▼下のスレッド
■50513 / 親記事)  証明問題です
□投稿者/ さく 一般人(1回)-(2020/09/25(Fri) 15:35:02)
    こちらの問題が分かりません。分かる方お願いします。
1109×349 => 250×78

1601015702.png
/49KB
引用返信/返信 [メール受信/OFF]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■50510 / 親記事)  z^5 = -1 を解く
□投稿者/ Megumi 一般人(6回)-(2020/09/25(Fri) 09:42:44)
     z^5 = 1 と同じように解いたのですが、これでいいのでしょうか?
     
      z = r(cosθ+isinθ)    (r、θは実数)

      z^5 = r^5(cosθ+isinθ)^5
        = r^5(cos5θ+isin5θ)
      -1 = -1 + 0i = 1(cosπ + isin0)
     実部と虚部を比較して
      r^5 = 1, 5θ = (2n+1)π  (n = 0, 1, 2, 3, 4)
     したがって
      r = 1
      θ = π/5, 3π/5, 5π/5 = π/5, 7π/5, 9π/5
     ゆえに
      z = 1,
      cos(π/5) + isin(π/5) = e^(iπ/5)    重解?
      cos(3π/5) + isin(3π/5) = e^(i3π/5)
      cos(7π/5) + isin(7π/5) = e^(i7π/5)
      cos(9π/5) + isin(9π/5) = e^(i9π/5)

引用返信/返信 [メール受信/OFF]

▽[全レス2件(ResNo.1-2 表示)]
■50511 / ResNo.1)  Re[1]: z^5 = -1 を解く
□投稿者/ らすかる 一般人(19回)-(2020/09/25(Fri) 11:20:18)
    >  -1 = -1 + 0i = 1(cosπ + isin0)
    >  実部と虚部を比較して
    >   r^5 = 1, 5θ = (2n+1)π  (n = 0, 1, 2, 3, 4)

    この部分は
    -1 = |-1|(cos(arg(-1))+isin(arg(-1))) = 1(cos(2n+1)π + isin(2n+1)π)
    ∴r^5=1, 5θ=(2n+1)π
    です。

    >   θ = π/5, 3π/5, 5π/5 = π/5, 7π/5, 9π/5

    5π/5はπ/5ではありません。5π/5=πです。

    >   z = 1,

    突然現れたz=1は誤りです。

    >   cos(π/5) + isin(π/5) = e^(iπ/5)    重解?

    重解ではありません。
    解は
    z=
    cos(π/5) + isin(π/5) = {√5+1+i√(10-2√5)}/4,
    cos(3π/5) + isin(3π/5) = {-√5+1+i√(10+2√5)}/4,
    cos(5π/5) + isin(5π/5) = -1,
    cos(7π/5) + isin(7π/5) = {-√5+1-i√(10+2√5)}/4,
    cos(9π/5) + isin(9π/5) = {√5+1-i√(10-2√5)}/4
    となります。
    もし最初から答えをe^(iπ/5)の形で書きたかったのであれば、
    z^5=-1=e^((2n+1)iπ)
    z=e^((2n+1)iπ/5)
    ∴z=e^(iπ/5),e^(3iπ/5),e^(5iπ/5)=e^(iπ),e^(7iπ/5),e^(9iπ/5)
    とするのが早いですし、そうでなくてもe^(iπ/5)の形を知っているならば
    こちらの答えを先に出した方が(cosとisinを書く手間が減る分)簡単だと思います。

引用返信/返信 [メール受信/OFF]
■50512 / ResNo.2)  Re[2]: z^5 = -1 を解く
□投稿者/ Megumi 一般人(7回)-(2020/09/25(Fri) 11:36:09)
    > 5π/5はπ/5ではありません。5π/5=πです。
     あちゃー、そうですね(^O^)。

     とても参考になりました。感謝です。

引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-2]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■50506 / 親記事)  空間上の点
□投稿者/ YUASOBI 一般人(1回)-(2020/09/23(Wed) 01:28:45)
    xyz座標空間上に原点O(0,0,0)と3点A,B,Cがあり、
    Aはyz平面にあり、
    線分OA,OB,OCの長さは全て等しく、
    OAとOB、OBとOC、OCとOAは全て直交し、
    A,B,Cのz座標がそれぞれ1,2,4であるとき、
    A,B,Cの座標を求めたいです。
    教えて下さい。お願いいたします。
引用返信/返信 [メール受信/OFF]

▽[全レス2件(ResNo.1-2 表示)]
■50508 / ResNo.1)  Re[1]: 空間上の点
□投稿者/ らすかる 一般人(18回)-(2020/09/23(Wed) 03:14:36)
    P(0,0,t),Q(0,t,0),R(t,0,0)(t>0)とすると
    それぞれの点から平面x+ay+bz=0までの距離は
    |bt|/√(a^2+b^2+1), |at|/√(a^2+b^2+1), |t|/√(a^2+b^2+1)だから
    これが1,2,4になるためにはb=1/4,a=1/2,t=√21
    つまりP(0,0,√21),Q(0,√21,0),R(√21,0,0)から
    4x+2y+z=0までの距離が順に1,2,4。
    x'=(x-2y)/√5, y'=(2x+y)/√5, z'=zとおいて回転すると
    P'(0,0,√21),Q'(-2√105/5,√105/5,0),R'(√105/5,2√105/5,0),
    平面は(2√5)y'+z'=0
    x''=x, y''={y'-(2√5)z'}/√21, z''={(2√5)y'+z'}/√21とおいて回転すると
    P''(0,-2√5,1),Q''(-2√105/5,√5/5,2),R''(√105/5,2√5/5,4),
    平面はz''=0
    よって、このP'',Q'',R''をA,B,Cとすれば条件を満たす。
    またyz平面に関する対称移動やzx平面に関する対称移動を行っても条件を満たすので、
    解は全部で4通りあり、具体的には
    A(0,-2√5,1),B(干2√105/5,√5/5,2),C(±√105/5,2√5/5,4)(複合同順)と
    A(0,2√5,1),B(干2√105/5,-√5/5,2),C(±√105/5,-2√5/5,4)(複合同順)。
引用返信/返信 [メール受信/OFF]
■50509 / ResNo.2)  Re[2]: 空間上の点
□投稿者/ YUASOBI 一般人(2回)-(2020/09/23(Wed) 09:37:39)
    ありがとうございました!!
    とても助かりました(*´∇`*)
解決済み!
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-2]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■50499 / 親記事)  複素関数の部分分数分解
□投稿者/ Megumi 一般人(3回)-(2020/09/20(Sun) 13:09:52)
     実感数では
      1/(1-t^2)^2 = a/(1-t) + b/(1-t)^2 + c/(1+t) + d/(1+t)^2.

      1 = a(1-t)(1+t)^2 + b(1+t)^2 + c(1-t)^2(1+t) + d(1-t)^2
       = a(1+t-t^2-t^3) + b(1+2t+t^2) + c(1-t-t^2+t^3) + d(1-2t+t^2)
       = a + b + c + d + (a+2b-c-2d)t + (-a+b-c+d)t^2 + (-a+c)t^3.
      a + b + c + d = 1.
      a + 2b - c - 2d = 0.
      - a + b - c + d = 0.
      -a + c = 0.
      ∴a = b = c = d = 1/4.

     これにならって
      1/(z^2+1) = 1/(z+√2i)(z-√2i) = α/(z+√2i) + β(z-√2i)
      1 = α(z-√2i) + β(z+√2i)
       = αz + βz - α√2i + β√2i
       = z(α+β) - √2i(α-β)
      α+β = 0
      α-β = -1/√2i
      2α = 1/√2i.  α = 1/2√2i.  β = -1/2√2i
      ∴α/(z+√2i) + β(z-√2i) = 1/2√2i( 1/(z+√2i) - 1/(z-√2i) )
    とやったのですが、これでいいのでしょうか?

引用返信/返信 [メール受信/OFF]

▽[全レス4件(ResNo.1-4 表示)]
■50501 / ResNo.1)  Re[1]: 複素関数の部分分数分解
□投稿者/ らすかる 一般人(15回)-(2020/09/20(Sun) 20:06:43)
    (z+(√2)i)(z-(√2)i)=z^2+2≠z^2+1ですから先頭行が正しくありません。
引用返信/返信 [メール受信/OFF]
■50502 / ResNo.2)  Re[2]: 複素関数の部分分数分解
□投稿者/ Megumi 一般人(4回)-(2020/09/20(Sun) 22:18:15)
    回答ありがとうございます。
    1/(z^2+2)の分解でした。お騒がせしました。
引用返信/返信 [メール受信/OFF]
■50503 / ResNo.3)  Re[3]: 複素関数の部分分数分解
□投稿者/ らすかる 一般人(16回)-(2020/09/21(Mon) 00:10:58)
    それでしたらα-β=-1/{(√2)i}までは正しいですが、
    次の2α=1/{(√2)i}が間違っています。
    正しくは2α=-1/{(√2)i}です。
    符号が逆ですので、最後の式を計算すると-1/(z^2+1)になります。

引用返信/返信 [メール受信/OFF]
■50504 / ResNo.4)  Re[4]: 複素関数の部分分数分解
□投稿者/ Megumi 一般人(5回)-(2020/09/21(Mon) 05:21:31)
    重ね重ねありがとうございます。その通りでした。
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-4]



■記事リスト / ▲上のスレッド
■50500 / 親記事)  熱力学の本に出てくる式変形がわかりません。
□投稿者/ もりかわ 一般人(1回)-(2020/09/20(Sun) 19:26:14)
    画像の一番右の式変形がわかりません。何故−が+になるのでしょうか。
    わかる方がいたら教えていただきたいです。よろしくお願いします。
1792×474 => 250×66

DSC_1003.JPG
/190KB
引用返信/返信 [メール受信/ON]






Mode/  Pass/

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

- Child Tree -
Edit By 数学ナビゲーター